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ABSTRACT 

 

The dairy industry is faced with the challenge of euthanizing unwanted male 

offspring in addition to other sick or injured neonates. Carbon dioxide (CO2) may be a 

potential alternative to current methods. The goat kid served as a model in approach-

avoidance and conditioned place aversion paradigms. A preference test box was custom-

made with two connected chambers; one chamber held an ambient atmosphere (control) 

and one maintained a static CO2 concentration (treatment). Kids were allotted 5-minutes 

in the control chamber before a sliding door was opened, after which kids were given 10-

minutes access to the treatment chamber. The objective of the first study was to 

determine the ability of kids to move from the control to the treatment chamber to access 

a milk reward, and the effect of an olfactory or visual stimulus on learning. All kids 

(n=24) exhibited learning, and latencies to enter, touch the milk bottle, and suckle 

decreased over day (P<0.0001). Milk consumption increased over days (P<0.0001), and 

startle, bottle engagement, and lying behavior did not differ between days (P>0.05). The 

presence of an olfactory stimulus (peppermint oil) did not affect learning, and the visual 

stimulus (plastic curtain) did not prevent learning. The second study examined kids’ 

tolerance of 10%, 20%, and 30% CO2. Kids (n=12) were randomly assigned 10% or 20% 

as the first treatment, and were systematically tested with all kids receiving 30% as the 

last treatment. A 2-day washout (ambient CO2) period occurred between each gas 

treatment. 10 kids tolerated 10% CO2, while one kid exited the treatment chamber after 

consuming his full ration, and 1 kid lost posture at 289s. At 20% and 30%, posture loss 

ranged from 83s to 271s. One kid exited before losing posture at 20%, then re-entered the 

chamber and became recumbent. Kids did not show avoidance behavior to any CO2 
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concentration, and did not appear to develop a conditioned aversion. The results of this 

study show promising results for CO2 as a euthanasia method in goat kids. Further 

research is required to confirm its suitability, and determine its potential for other 

ruminant species.
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CHAPTER 1.  1 

 2 

INTRODUCTION 3 

Immanuel Kant stated in 1798 “The first time [man] said to the sheep 'Nature 4 

did not give thee the pelt thou wearest for thyself, but for me,' stripped him of it, and put 5 

it on himself, he perceived a prerogative, that he, by virtue of his nature, was above all 6 

animals, which he now considered...as the means and instruments left to his will for the 7 

accomplishment of his purposes at pleasure.” Kant further postulates that our treatment of 8 

animals is a reflection on our own morality, and that “any action whereby we may 9 

torment animals, or let them suffer distress or otherwise treat them without love, is 10 

demeaning to ourselves” (Korsgaard 2004). This philosophy is manifested in the evolving 11 

animal protection laws throughout history. Specifically, the passage of the Humane 12 

Methods of Slaughter Act by the United States in 1958 drew to attention the idea of a 13 

“humane death” during processing, and it outlined the steps necessary to achieve this 14 

concept (Becker 2008). Euthanasia as defined by the Merriam-Webster dictionary is “the 15 

act or practice of killing or permitting the death of hopelessly sick or injured individuals 16 

(as persons or domestic animals) in a relatively painless way for reasons of mercy” 17 

(Merriam-Webster 2015b).  The American Veterinary Medical Association (AVMA) uses 18 

“euthanasia” as a term that describes the ending of an animal's life in a way that 19 

minimizes or eliminates pain (Leary, et al. 2013 p 6). Although there is some debate 20 

about the use of the word 'euthanasia' when referring to animals that are killed for human 21 

use, and while neither the disposal of experimental animals nor the slaughter of food 22 

animals falls under the definition of euthanasia, it remains the moral obligation of 23 
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humans to provide sensitive and responsible care in all human-animal relationships 24 

(Pavlovic 2011). 25 

1.1 Euthanasia Needs 26 

In 1963 the AVMA formed the Panel on Euthanasia (POE), a committee of 27 

experts tasked with providing guidelines to veterinarians about current and potential 28 

methods for euthanasia of dogs, cats, and small mammals. Since its formation in 1963, 29 

the POE has expanded its publication to include a multitude of animals such as food and 30 

laboratory animals, and wildlife. The guidelines in the POE publication list acceptable, 31 

acceptable with conditions, and unacceptable methods for euthanizing animals. Methods 32 

considered acceptable consistently provide a humane death when used as the sole 33 

euthanasia technique, while methods that are acceptable with conditions require certain 34 

conditions to be met to be considered a humane death. These conditions may have a 35 

greater risk for operator error or worker safety, little scientific documentation, or require 36 

a secondary method to ensure a death. Acceptable with conditions methods are 37 

considered to be as humane as acceptable methods when all required criteria are met. 38 

Unacceptable methods are techniques that are known or have significant potential to 39 

cause human or animal pain and suffering under any conditions (Leary, et al. 2013 p 10-40 

11). These guidelines go in to detail about the appropriate steps for each acceptable, or 41 

acceptable with conditions, method to ensure that personnel who are training, or being 42 

trained, are provided with detailed and accurate information about the appropriate 43 

euthanasia of an animal. Furthermore, the guidelines published by the POE also include a 44 

focus on possible psychological and welfare implications in humans and animals 45 

concerning euthanasia methods (Leary, et al. 2013 p 5). When creating an on-farm 46 



www.manaraa.com

3 
 

  

critical endpoint and euthanasia protocol, these guidelines provide the necessary 47 

information for collaboration between veterinary and farm personnel to establish the most 48 

appropriate animal care plan.  49 

The Animal Health and Welfare panel of the European Food Safety Authority 50 

(EFSA) has published a similar document outlining the acceptable stunning methods for 51 

animals during processing. The “Welfare Aspects of Animal Stunning and Killing 52 

Methods” (EFSA 2013) contains requirements that the European Union developed to 53 

address humane slaughter and animal welfare in processing plants. This document states 54 

that stunning/killing methods for livestock processing must ensure either immediate and 55 

unequivocal unconsciousness and loss of sensibility, or a non-aversive, pain and distress-56 

free induction to unconsciousness and insensibility. The guidelines go on to state that the 57 

duration of unconsciousness must be significantly longer than the total time required to 58 

ensure death of an animal. Akin to the euthanasia guidelines published by the AVMA, the 59 

EFSA document provides detailed descriptions and recommendations of methods for 60 

animal slaughter.  61 

Both of these committees are tasked with providing easily accessible guidelines 62 

for the euthanasia of animals. These guidelines are crucial to promoting positive 63 

universal welfare of animals, particularly in their last moments of life. In order to provide 64 

comprehensive information, constant research must be conducted to assess and re-65 

evaluate current methods and investigate the use of future methods. By regularly 66 

updating these guidelines, the committees are able to provide the information necessary 67 

for producers, veterinarians and animal caretakers to implement the most practical and 68 

humane euthanasia practices for their circumstances.  69 
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Euthanasia is a standard practice in most sectors of the animal industry today. 70 

Many veterinarians must regularly perform the euthanasia of a variety of animals 71 

including companion animals, livestock, wildlife, and laboratory animals. Similarly, 72 

animal caretakers such as food production employees are often tasked with appropriate 73 

euthanasia of their animals. Throughout the lifetime of a food animal operation, it is 74 

inevitable that there will be numerous situations where an ill or injured animal must be 75 

euthanized without veterinary assistance. While ill and otherwise moribund animals are 76 

not an uncommon occurrence, farms typically do not employ a veterinarian for daily 77 

visits. Subsequently, on-farm euthanasia performed by employees may be necessary due 78 

to the severity of the illness or injury, a lack of immediate veterinary personnel, a lack of 79 

physical means to immediately transport the animal to a veterinarian, or a myriad of other 80 

reasons. As such, it is necessary that farms work with their veterinarian to develop a 81 

detailed plan for critical endpoints and on-farm euthanasia methods (Turner & Doonan 82 

2010). Defining euthanasia end-points for animals has been a source of controversy in 83 

regards to the welfare of the animal. The culling of an otherwise healthy animal due to 84 

productivity concerns is considered by some to be inhumane, and poor in terms of animal 85 

welfare. For example, even in the face of disease, some individuals maintain that 86 

euthanizing otherwise healthy animals as a control measure is wrong (Anthony 2004, 87 

Mepham 2001). Similarly, culling animals for lack of performance or profitability is a 88 

controversial, albeit common, practice in today's food industry. The argument against 89 

culling for productivity is based on the argument of longevity. The focus of the longevity 90 

argument is that the quantity of life is an independent, and fundamental, attribute of 91 

animal welfare. The reasoning is that in order to respect the individuality of an animal 92 
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and consequently not jeopardize its welfare, one must not interfere with its natural 93 

lifespan (Bruijnis, et al. 2013). However, despite the controversy of critical end points it 94 

remains that proper, revised, and well-defined guidelines for euthanasia have the 95 

potential to improve animal welfare worldwide. 96 

1.1.1 Euthanasia needs in the dairy industry 97 

On-farm euthanasia of dairy animals may occur for a multitude of different 98 

reasons, with illness and injury to an animal being the most well recognized although not 99 

the sole reasons for on-farm euthanasia. The critical end-points mentioned previously are 100 

important guidelines that caretakers must follow when it comes to the difficult decision to 101 

euthanize an animal. In order to keep economic balance within an operation, animals 102 

must produce a positive net yield in relation to their input cost, and an animal may be 103 

culled from the herd for illness and injury, as well as poor performance, poor 104 

temperament, and lack of potential profitability. The argument of longevity is especially 105 

pertinent in the dairy industry due to the relatively long lifespan of a dairy cow compared 106 

to a beef steer or finisher pig. While the lives of meat animals will ultimately be 107 

shortened in order to produce the end product, a dairy cow is expected to produce in a 108 

herd for several years. As such, there is support to further improve the lifespan of animals 109 

in the dairy industry.  110 

A current issue associated with dairy animal welfare and longevity is unwanted 111 

male offspring born in to the industry every year that hold less production value than 112 

their female counterparts. According to the USDA semi-annual cattle report, as of July 113 

2014, there are approximately 9.3 million milk cows currently in production in the United 114 

States. It can be concluded that the majority of these cows had calves by January 2015, 115 
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and out of these calves 4.6 million were retained as replacement heifers (USDA 2015a). 116 

This leaves approximately 4.7 million dairy calves that must be either put in to a meat 117 

finishing program or euthanized. There have been efforts to decrease the number of dairy 118 

bulls that are killed on-farm for economic reasons. For example, the percentage of calves 119 

euthanized on-farm in the UK has decreased from 21% to 12% from 2006 to 2012; 120 

84,817 dairy calves were euthanized on-farm in 2006 while in 2012, 54,670 calves were 121 

euthanized on-farm. The numbers for on-farm euthanasia of dairy calves in the UK also 122 

reflect the 30,000 calves housed and likely euthanized on bovine tuberculosis positive 123 

farms (Compassion in World Farming 2013). This change has been driven mainly by the 124 

increasing profitability of dairy bull calves, and there has been an upward trend to finish 125 

unwanted dairy calves for food and other goods production instead of euthanizing the 126 

calves soon after birth (Leaders, et al. 2008, Maas & Robinson 2007). Furthermore, 127 

approximately 8% of the cattle harvested in the US are Holstein steers, and 128 

approximately 650,000 special-fed Holstein veal calves are produced each year (Schaefer 129 

2005, Slayton 2002). However, despite the more positive outlook for dairy bull calves 130 

compared to previous years, on-farm euthanasia remains a regular occurrence. 131 

Although the push for decreasing on-farm euthanasia of healthy calves has 132 

arguably improved welfare conditions on the premise of longevity, there are potential 133 

complications involved in raising bull calves for veal or beef. Potential complications 134 

include transportation stress, dietary stress, illness and weakened immune systems 135 

(Leaders, et al. 2008). Under inferior conditions, these stressors may quickly diminish the 136 

welfare of the calves to an unacceptable level. In North America, veal mortality rates 137 

range from 2.5% to 8.8% with respiratory and digestive illness being the leading causes 138 
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(Leaders, et al. 2008).  A 2011 study of the mortality and post-slaughter wastage of New 139 

Zealand veal calves found that the processing plant had a pre-slaughter mortality of 0.7%. 140 

The primary cause of pre-slaughter mortality in New Zealand veal calves was found to be 141 

digestive tract issues, and the second leading cause was umbilical infections. 142 

Furthermore, 74% of a sample of veal calves from 3 European countries suffered from 143 

lesions in the abomasum (Thomas & Jordaan 2013). Dietary stress such as low rumen 144 

development and high incidences of rumen plaque formation is prevalent in veal calves 145 

due to their traditional ration that contains little to no roughage (Suárez, et al. 2007). This 146 

issue is exacerbated in the U.S. which, unlike the EU, does not require roughage to be fed 147 

to veal calves (Leaders, et al. 2008). Furthermore, transportation issues such as 148 

inadequate space allotment, food and water deprivation, long-distance travel, and 149 

seasonal differences have all been associated with decreased calf welfare during transport 150 

(Cave, et al. 2005, Jongman & Butler 2014). Although these issues do not negate the 151 

importance of the veal or dairy beef industry, it is important for producers to assess 152 

whether on-farm euthanasia may be a more humane option for a weak or otherwise 153 

unthrifty calf.  154 

1.1.2 Euthanasia needs of small ruminants 155 

Similar to dairy calves, euthanasia of unwanted kids and lambs is necessary 156 

when the animals are morbid, under developed, or unsellable (Rietveld 2003b). In 2014 157 

the sheep industry had a lamb mortality rate of 10.6% which represents 365,000 lambs 158 

lost or euthanized (USDA 2015b). In 2009 the goat industry had a kid death loss of 159 

175,000, excluding predators and unknown causes (NASS 2010). These numbers indicate 160 
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that approximately 540,000 sheep and goats under 1 year old die or are euthanized 161 

annually.  162 

Dairy goat producers in particular face a unique challenge regarding the future 163 

of unwanted male offspring. In areas where the major demographic has little demand for 164 

goat meat, such as the US and the UK, male dairy goats are typically euthanized shortly 165 

after birth (Humane Slaughter Association 2008, Turner & Doonan 2010). One solution 166 

is the practice of providing euthanized kids as meat for zoos. It is recommended that 167 

whole carcasses be fed to captive carnivores to more appropriately emulate the wild diet 168 

of the species (Colahan, et al. 2012). This includes any hide, hair, bones, viscera, and gut 169 

contents. To mitigate potential health concerns, zoos must be discerning about their food 170 

source supplies. Any potential food source must be investigated for any possible 171 

deleterious attributes including pharmaceutical residues or signs of disease (Colahan, et 172 

al. 2012). To decrease the risk for disease or a foreign body to be present within the 173 

carcass, some zoos prefer, or even require, an unblemished whole carcass for feeding. 174 

This precaution immediately excludes animals with any visible lesions or lacerations, and 175 

subsequently restricts the on-farm euthanasia options for small ruminant producers who 176 

intend to sell their unwanted offspring as a food source for zoos.  177 

1.2 Current Euthanasia Guidelines for Ruminants 178 

1.2.1 Acceptable methods 179 

In order to be considered an acceptable euthanasia method by an American 180 

Veterinary Medical Association (AVMA), any technique must be assessed by the 181 

following criteria:  “(1) the ability to induce loss of consciousness and death with a 182 
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minimum of pain and distress; (2) time required to induce loss of consciousness; (3) 183 

reliability; (4) safety of personnel; (5) irreversibility; (6) compatibility with intended 184 

animal use and purpose; (7) documented emotional effect on observers or operators; (8) 185 

compatibility with subsequent evaluation, examination, or use of tissue; (9) drug 186 

availability and human abuse potential; (10) compatibility with species, age, and health 187 

status; (11) ability to maintain equipment in proper working order; (12) safety for 188 

predators or scavengers should the animal's remains be consumed; (13) legal 189 

requirements; and (14) environmental impacts of the method or disposition of the 190 

animal's remains” (Leary, et al. 2013 p 10-11).  According to the Ontario Ministry of 191 

Agriculture and Food, there are three approved methods of euthanasia for ruminants: 192 

overdose by barbiturate, euthanasia by gunshot, and penetrating and non-penetrating 193 

captive bolt (Rietveld 2003a). The POE lists these methods, along with electrocution, as 194 

acceptable with conditions for the euthanasia of bovids and small ruminants (Leary, et al. 195 

2013 p 51-56). Gunshot is currently the most common method for on-farm euthanasia in 196 

cattle, while captive-bolt is the most common pre-slaughter stunning method (Humane 197 

Slaughter Assocation 2013, Shearer, et al. 2013). Although gunshot is effective when 198 

performed correctly, the margin for error leads to welfare concerns. Additionally, these 199 

methods may be aesthetically displeasing for the personnel involved (Woods, et al. 200 

2010). Captive-bolt presents similar advantages and disadvantages as gunshot, but also 201 

has a high initial cost due to the expensive equipment. Issues with electrocution include 202 

consistency of the electric shock relating to dehydration and cattle size, and significant 203 

danger to the operator if the equipment is inappropriate or faulty. Barbiturates are 204 

currently the only accepted form of euthanasia by the AVMA, and this method is 205 
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generally preferred because it is perceived as the most peaceful and humane (Leary, et al. 206 

2013 p 27). However issues with cost and carcass disposal generally inhibit the 207 

practicality of barbiturate overdose as a primary on-farm euthanasia method (Leary, et al. 208 

2013 p 51-56). 209 

1.2.2 Unacceptable methods 210 

Unacceptable methods of euthanasia for ruminants include manually applied 211 

blunt force trauma to the head, injection of chemical agents in to or exsanguination of 212 

conscious animals, injection of potassium chloride or magnesium sulfate with sedation 213 

relying solely on ɑ-2-agonists, air embolism, electrocution using a 120-volt electrical 214 

cord, and drowning (American Association of Bovine Practicioners 2013). Ultimately, 215 

this restricts the euthanasia option for neonatal ruminants to the same methods approved 216 

for adults. The limited number of approved methods foreshadows possible welfare issues 217 

concerning the euthanasia of neonatal ruminant. Methods that require advanced 218 

technology and skill such as electrocution and barbiturate overdose are impractical, 219 

leading some producers to blunt force trauma, a traditional choice and the most cost 220 

efficient option. 221 

These factors highlight the need for research in to alternative euthanasia 222 

methods in lieu of the traditional forms approved for ruminants. Inhaled euthanasia 223 

agents offer advantages where the previously mentioned methods fall short. They are a 224 

top choice for euthanasia by many swine and poultry producers, and are highly utilized in 225 

research settings (Matthis 2005, Raj, et al. 2004, Webster, et al. 1996). The POE states 226 

that inhaled agents are approved for use in most birds and mammals, but does not cite 227 

any specific research for the use of inhalant gases in ruminants. Although there is no 228 



www.manaraa.com

11 
 

  

published research concerning the effects of using gas euthanasia in ruminants, it has 229 

been reported that carbon dioxide has been used for the euthanasia of goat kids and lambs 230 

by producers in several countries (Woods, et al. 2010).  Due to this method currently 231 

being implemented without any guidelines, it is clear that further studies are needed in 232 

order to conclude whether inhalant agents are both humane and effective in ruminant 233 

species. These studies will allow us to determine whether this alternative method has 234 

potential to be considered acceptable by the AVMA. 235 

1.3 The Potential of Carbon Dioxide 236 

1.3.1 Homeostasis and carbon dioxide 237 

Carbon dioxide has been used as a euthanasia agent for decades as animal 238 

caretakers capitalize on advantages in both employee safety as well as cost (Leary, et al. 239 

2013 p 24-26). The lengthy history of CO2 as a euthanasia method has provided a vast 240 

amount of information on the physiological responses of the body to high levels of CO2. 241 

The normal level of CO2 in atmospheric air is 0.04%. During homeostatic conditions, 242 

mammals maintain an arterial pressure of 35-45 mmHg CO2 (PaCO2). As CO2 is 243 

produced as a waste product from tissues, it binds to the hemoglobin as blood travels 244 

through the tissue. As the CO2-rich blood flows through the lungs, the CO2 is released 245 

from the hemoglobin in favor of oxygen molecules from inspired air. This gas exchange 246 

in the lungs and other tissues is powered by the Bohr Effect phenomenon. When blood 247 

enters an environment that is high in CO2 such as the tissues, the pH of the blood 248 

decreases as the CO2 reacts with water in the blood to create carbonic acid. This drop in 249 

pH triggers hemoglobin to release the oxygen molecules that had bound to the proteins. 250 

As the hemoglobin releases oxygen molecules, its affinity for CO2 molecules increases. 251 
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The CO2-laden blood then travels through the venous system to the lungs. The 252 

environment within the lungs has much lower levels of CO2 compared to other tissues in 253 

the body. The pH level of the blood begins to rise once it reaches the lungs, which 254 

encourages the dissociation of CO2 molecules from hemoglobin. Additionally, the high 255 

levels of CO2 within the blood coupled with the low levels of CO2 in the lungs creates a 256 

concentration gradient that facilitates the diffusion of CO2 molecules in to the alveoli 257 

(Shepard, et al. 1981). As the hemoglobin releases the bound CO2 molecules, the 258 

increased pH of the blood promotes the binding of oxygen molecules that are present in 259 

the alveoli from inspired air. The cycle is then repeated as oxygenated blood is delivered 260 

to tissues and CO2 molecules are expelled from the alveoli by exhalation. 261 

1.3.2 Hypercapnia and carbon dioxide 262 

As atmospheric CO2 levels rise above the normal concentration of 0.04%, the 263 

body begins to experience a state of hypercapnia. Hypercapnia is defined as the presence 264 

of excessive CO2 in the bloodstream. Hypercapnia can be induced by ailments such as 265 

sleep apnea and lung disease, however direct exposure to elevated atmospheric levels of 266 

CO2 is the approach used for euthanasia. The extent of the hypercapnic state that occurs 267 

during CO2 exposure is positively correlated with the level of CO2 in the atmosphere. 268 

Additionally, as the level of CO2 in the atmosphere increases, the amount of available 269 

oxygen decreases inducing both hypercapnia and hypoxia. Hypoxia occurs when there is 270 

a deficiency in the amount of oxygen being transported to tissues within the body. 271 

Hypoxia takes place due to the diminished binding affinity of oxygen to hemoglobin, as 272 

well as atmospheric air (29g/mol) being displaced by rising amounts of CO2 (44g/mol) 273 

which further depletes oxygen sources. As the animal inspires high concentrations of 274 
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CO2, excess carbonic acid (H2CO3) begins to form in the blood as the CO2 molecules 275 

react with water. This leads to an imbalance of the normal ratio between H2CO3 and 276 

bicarbonate (HCO3). The normal 1H2CO3:20HCO3 ratio acts as a buffer for homeostatic 277 

levels of H2CO3. When this ratio is skewed in favor of H2CO3, respiratory acidosis 278 

ensues. The increased levels of H2CO3 then cause acidemia which inhibits the Bohr effect 279 

and leads to tissue hypoxia, erratic cardiac activity, and reduced myocardial contractility 280 

(Hall & McShane 2013). Eventually, if there is no increase in available oxygen, heart rate 281 

decreases, hypotension and vascular collapse occurs, and death follows (Smith & Harrap 282 

1997). 283 

1.3.3 Induction of unconsciousness 284 

The time needed to reach unconsciousness largely depends on the concentration 285 

of CO2 being used. In an atmosphere containing 100% CO2, rats reached insensibility 286 

within 25 seconds (Reed, et al. 2009). When placed in to a chamber containing 50% CO2 287 

coupled with a 20% box volume exchange(bve)/min flow rate, weaned pigs experienced 288 

a loss of posture at 35 seconds, while weaned pigs lost posture at 143 seconds when 289 

placed in to an ambient chamber with a 20% bve/min flow rate (Sadler, et al. 2014). 290 

Somatosensory potentials were lost in pigs exposed to 80-90% CO2 within 17 to 25 291 

seconds (Raj, et al. 1997). Six week old broiler chickens lost posture in 172 seconds in an 292 

atmosphere of 15.7% CO2 (Gerritzen, et al. 2004).  293 

While the latency to unconsciousness is more prolonged than the immediate 294 

physical methods, CO2 does offer the benefit of anesthetic and analgesic effects. The 295 

depressant effect of CO2-induced hypercapnia on the central nervous system has been 296 

well documented in many species. Human patients experience deep anesthesia after being 297 
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exposed to levels of 15%-20% CO2 for up to 30 minutes (Morris 2002). When exposed to 298 

80% CO2 in ambient air for 120 seconds rats were deeply anesthetized for 77 seconds, 299 

and after being exposed to 80% CO2 in pure oxygen for 30 seconds, guinea pigs were 300 

anesthetized for 50 seconds (Kohler, et al. 1999). Similarly, it was found that rats 301 

experienced a deep level of anesthesia for 1 to 3 minutes after 30 seconds exposure to 302 

70% CO2 and exhibited antinociception to thermal and mechanical pain stimuli for up to 303 

60 minutes (Mischler, et al. 1994). Withdrawal responses and pain behaviors in 304 

moderately hypercapnic rats ( PaCO2: 40 ± 8 to 90 ± 9mmHg) were also reduced 305 

(Fukuda, et al. 2006, Gamble & Milne 1990). However, contradictory results have been 306 

observed in pigs anesthetized with CO2 prior to castration. Pigs showed increased pain 307 

behaviors when treated with CO2 compared to pigs castrated without any pain mitigation 308 

(Sutherland, et al. 2012). This difference may be attributed to the increased pain of 309 

castration compared to mechanical pressure, and the production of pro-inflammatory 310 

cytokines in response to CO2 exposure (Abolhassani, et al. 2009). It is possible that 311 

exposure to CO2 causes increased inflammation at injury sites, subsequently increasing 312 

pain sensation after neural transmission returns to normal levels. It is also possible that 313 

the response to CO2 is not conserved across species. Rats were observed to show 314 

significantly less distress and pain behaviors when placed in an environment with an air 315 

replacement rate of 10% CO2/min versus an environment with an air replacement rate of 316 

50% argon/min. Rats exposed to CO2 had significantly slower heart rates as compared to 317 

rats exposed to argon. Furthermore, there were no observed incidents of gasping or 318 

seizures prior to unconsciousness, unlike rats in 100% argon environments (Burkholder, 319 
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et al. 2010). This difference in pain behavior may be elicited by CO2’s ability to directly 320 

suppress the central nervous system. 321 

1.3.4 Induction of anesthesia and analgesia 322 

CO2 is able to induce anesthesia by depressing the reactivity of both respiratory 323 

and non-respiratory neurons, an effect that is more pronounced with higher CO2 324 

concentrations (Lipski 1986). As peripheral and central chemoreceptors are stimulated by 325 

the decreasing pH of their environment during hypercapnia, stress-related mechanisms 326 

trigger the release of opioids (Fukuda, et al. 2006, Gamble & Milne 1990, Grönroos & 327 

Pertovaara 1994). Exogenous, as well as endogenous, opioids are linked to the depression 328 

of ventilatory rates, a lessened “need to breathe”, and other sedative effects which may 329 

further support the tie between anesthesia and hypercapnia (Kimura & Haji 2014, 330 

Pattinson, et al. 2007, Zhang, et al. 2007). In vitro studies of the analgesic properties of  331 

CO2 showed that under conditions of severe acidosis (pH ~6.7), rat spinal cords exhibited 332 

nociceptive responses that were similar to spinal cords treated with the analgesic 333 

dexmedetomidine (Otsuguro, et al. 2007). Although this strong analgesic response to 334 

hypercapnia may not extrapolate uniformly to the in vivo model, the release of 335 

endogenous opioids during hypercapnic stress may play a role in the observed reduction 336 

of pain response in the rodent model. The more robust anesthetic effect of hypercapnia is 337 

likely augmented by significantly increased levels of extracellular adenosine in cerebral 338 

fluid. Adenosine acts as an agonist for the G-protein coupled receptor A1, which when 339 

bound, has a significant inhibitory effect on neuronal transmission (Dulla, et al. 2005, 340 

Dunwiddie & Masino 2001, Eisenach, et al. 2004, Otsuguro, et al. 2007). 341 

 342 
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1.3.5 The potential for pain and distress 343 

Although the ability of CO2 to produce analgesia and anesthesia is well 344 

researched, it is not a euthanasia method that is completely devoid of causing distress and 345 

pain. Breathing CO2 of varying levels is known to produce feelings of anxiety, fear, and 346 

pain. Air hunger is reported to begin in humans around 8% CO2 (Liotti, et al. 2001). 347 

Subjects described breathing 50% to 100% CO2 as very unpleasant and painful, 348 

respectively and experienced symptoms of panic during exposure to levels of 35% CO2 349 

(Danneman, et al. 1997, Van den Hout & Griez 1984). Higher concentrations of CO2 350 

were associated with more intense reactions of fear and pain (Danneman, et al. 1997, 351 

Vowles, et al. 2006). Studies using animal models have produced similar results. Rats 352 

begin to actively avoid CO2 concentrations at 15%, and will forgo a meal in order to 353 

leave the environment before the CO2 rendered them unable to exit. (Kirkden, et al. 2005, 354 

Niel & Weary 2007). Broiler chickens exhibited disruption in feeding as well as 355 

withdrawal behavior at concentrations of 40% CO2 and above (McKeegan, et al. 2006). 356 

Furthermore, elevated levels of substance P were observed in neonatal pigs exposed to 357 

100% CO2 which suggests that exposure to this concentration of CO2 is a painful and 358 

stressing experience (Sutherland, et al. 2012). The sense of fear and distress invoked by 359 

exposure to CO2 is triggered by peripheral as well as central chemoreceptors. The carotid 360 

body, a peripheral chemoreceptor, is sensitive to changes in PaCO2 within the blood and 361 

blood pH. Central chemoreceptors are located within the hindbrain and relay signals 362 

regarding pH and CO2 detection in the brain (Nattie & Li 2009). Peripheral and central 363 

chemoreceptors exhibit a synergistic relationship within the body for detecting pH and 364 

CO2 levels (Blain, et al. 2010). As the body moves away from homeostasis, these 365 
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chemoreceptors signal the central nervous system (CNS) to increase ventilation to restore 366 

appropriate PaCO2 levels (Blain, et al. 2010, Burnstock 2009, Nattie & Li 2009, Nurse & 367 

Piskuric 2013). As these chemoreceptors are activated the ensuing feeling of 368 

breathlessness urges the individual to escape the noxious environment. 369 

Although analgesic effects have been observed after exposure to CO2, these 370 

effects do not appear to be powerful enough to negate pain caused by direct exposure to 371 

the gas during the induction of anesthesia. The pain pathway is an innate protective 372 

mechanism responsible for processing information about potential hazards to survival. 373 

Pain receptors, otherwise known as nociceptors, are present throughout the body to alert 374 

an animal to dangerous changes in temperature, pressure, chemical reactions related to 375 

injury, and other noxious stimuli (Dubin & Patapoutian 2010, McKeegan 2004). 376 

Nociceptors are located throughout the respiratory tract, and are likely reactive to pain 377 

associated with tissue damage (Widdicombe 1982). In the nasal trigeminal system of the 378 

domestic hen, there are 40 nociceptors that are stimulated by the presence of ammonia 379 

(McKeegan 2004). These nociceptors serve to alert the animal of noxious chemicals 380 

present in the environment, and the resulting sensation of pain then drives the animal to 381 

escape from the hazardous environment. Upon inhalation of CO2, carbonic acid is formed 382 

as the molecule binds with water present in the respiratory tract. While the amount of 383 

acid formed is negligible in ambient conditions, higher concentrations of CO2 result in 384 

comparatively large amounts of acid being formed on mucous membranes. This activates 385 

the nociceptors within the respiratory tract and leads to the sensation of burning that 386 

many describe when exposed to CO2. There are also vagal afferent nerves are delegated 387 

to detecting hazards via signals from visceral organs. Vagal bronchopulmonary C-fibers 388 
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are located within the lungs and are able to elicit pain signals in response to both 389 

endogenous and exogenous stimuli (Kollarik, et al. 2010). These fibers are mildly 390 

stimulated by the inhalation of 30% CO2 for 5 to 8 breaths (Lin, et al. 2005). During 391 

euthanasia, it is likely that these nerves continue to be increasingly stimulated leading to 392 

increased sensations of pain.  393 

 Neonatal animals present a unique obstacle due to their innate resistance 394 

to hypercapnia. Fetal hemoglobin has a higher affinity for oxygen and a lower affinity for 395 

CO2, than adult hemoglobin (Bauer, et al. 1975). Fetal hemoglobin begins to dissipate 396 

after birth, but it is still at detectable levels for up to 48 days in goat kids (Johnson, et al. 397 

2002). Additionally, fetal circulation involves the shunting of oxygenated blood to the 398 

left atrium through the foramen ovale, a cardiac valve that allows blood to bypass the 399 

lungs. This valve begins to close soon after birth, however 7 days were required for 400 

complete closure of the foramen ovale in neonatal rats (Cole‐Jeffrey, et al. 2012). Due to 401 

the low affinity and the shunting mechanism, the hemoglobin of the neonate is less likely 402 

to bind CO2 in the lungs, and it is possible that inhalation of CO2 would not cause a 403 

rapid increase in PaCO2. Consequently, CO2 would not be as effective in neonates as it is 404 

in adults and may lead to unnecessary pain and distress. These physiologic differences 405 

may account for the increased exposure time to needed to euthanize neonatal rodents with 406 

CO2, although responses may differ by species based on evidence that neonatal pigs 407 

succumb to CO2 exposure faster than their older conspecifics (Pritchett, et al. 2005, 408 

Pritchett-Corning 2009, Sadler, et al. 2014). 409 

 410 

 411 
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1.4 Determining Stimulus Aversion and Corresponding Behaviors 412 

1.4.1 The limbic system 413 

The brain of a lamb, kid, calf, or similar animal consists of the first brain, 414 

known as the “R complex” or the reptilian brain, and the second brain which is better 415 

known as the “limbic” system. The reptilian brain elicits responses to basic survival 416 

needs such as hunger, thirst, and sexual drive, while the limbic system controls the more 417 

complex emotional responses of alertness, fear, and pain (Lubbe & Kenner 2009, Roxo, 418 

et al. 2011). Within the limbic system lies the amygdala, which is recognized as the 419 

center for developing emotional responses to stimuli. These responses are important for 420 

the survival of all animals. Olfactory, gustatory, visceral and other signals from sensory 421 

modalities travel via a series of signal cascades to higher order cortices and then to the 422 

amygdala. Efferent nerves run from the amygdala through the stria terminalis to the 423 

hypothalamus, and through the amygdalofugal pathway to the ventral striatum. The 424 

ventral striatum then projects to the basal ganglia where voluntary responses to emotional 425 

events are processed (McDonald 1998, Wright). During responses to a novel stimuli of 426 

either positive or negative valence, there is a significant increase in norepinephrine 427 

production in the prefrontal cortex, which then modulates the release of dopamine from 428 

the ventral striatum. This dopaminergic response to stimuli is essential to shaping 429 

behavioral responses to novel situations, and also to conditioning a reliable behavioral 430 

response such as a place preference (Schultz 2010, Ventura, et al. 2007). Through this 431 

series of reactions, the limbic structure provides an animal the ability to progressively 432 

assess a situation or stimulus. That information is then compounded in to a memory and 433 

available for the animal to draw upon in a future situation. This allows animals to be able 434 
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to reasonably anticipate the results of their future actions (Karli 1967). Based on the 435 

consequences from reacting to a novel stimulus, an animal is reinforced to either repeat 436 

their behavior or avoid the stimulus next time it is encountered. Through this learning 437 

process animals are able to identify which behaviors are pertinent to survival, and will 438 

begin to perform these behaviors with increasing reliability. When animals experience a 439 

negative outcome associated with a stimulus, they are significantly more likely to avoid 440 

that stimulus in the future. 441 

1.4.2 Conditioned place preferences and aversions 442 

In order to assess whether an animal finds a situation beneficial or aversive, its 443 

behavior during the situation must be titrated against its normal behavior. Aversion has 444 

been defined as “'a tendency to extinguish a behavior or to avoid a thing or situation and 445 

especially a usually pleasurable one because it is or has been associated with a noxious 446 

stimulus” (Merriam-Webster 2015a). Preference is defined as the “strength of motivation 447 

to obtain or avoid one resource or stimulus and the strength of motivation to obtain or 448 

avoid another” (Kirkden & Pajor 2006). Conditioned place preference and conditioned 449 

place aversion paradigms are tools that can be used to evaluate the level of preference or 450 

aversion an animal exhibits in response to a stimulus. Conditioned place preference tests 451 

involve the pairing of an unconditioned stimulus, such as a test box, with a rewarding 452 

stimulus such as food or cocaine. The animal will then begin to associate the previously 453 

unconditioned stimulus with the reward. The unconditioned stimulus is now a 454 

conditioned stimulus, and the animal will begin to seek access to the stimulus with an 455 

expectation of reward (Prus, et al. 2009). Conditioned place aversion tests use the same 456 

model, however the unconditioned stimulus is paired with something unpleasant such as 457 
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a shock or a dose of lithium chloride. The animal is then conditioned to associate the 458 

stimulus with an unpleasant event and will seek to avoid the stimulus. Conditioned place 459 

preference and aversion tests are the most direct measures of animal welfare because it's 460 

possible to evaluate the price an animal is willing to pay to either gain access to or avoid 461 

a certain situation (Dawkins 1990). These tests allow for the free choice of an animal, and 462 

it can be assumed that animals will choose the situation which they believe will benefit 463 

them the most. For example, lambs are able to discriminate between a novel, harmful 464 

foodstuff and a familiar, safe foodstuff. When presented with the choice between a 465 

familiar, safe feed and a novel, harmful feed lambs consistently decrease their intake of 466 

the novel food item over time. By nature, lambs graze on a variety of substances and as 467 

the lambs consumed both feeds and became ill, the consumption of the novel food 468 

reliably decreased. This behavior is consistent when lambs are presented two novel food 469 

groups as well. As the lambs sample both of the novel foods and begin to become ill, they 470 

decrease their consumption of the novel food that least resembled their initial, and safe, 471 

diet (Burritt & Provenza 1989). Similar results have been demonstrated in cannulated 472 

cattle, and rats (Lane, et al. 1990, Rozin & Kalat 1971). Alternatively, when animals 473 

experience a positive outcome related to a specific stimulus, they undergo appetitive 474 

associative learning and are subsequently more likely to repeat their actions in the future. 475 

This learning pathway is represented by the lambs consuming more of the familiar, safe 476 

foodstuff. It can also be represented by a mouse traversing a maze with increasing 477 

rapidity to obtain a reward. Similarly, it has been demonstrated by goats decreasing the 478 

time necessary to solve a visual puzzle in order to obtain drinking water. Goats are first 479 

able to associate a specific visual cue with access to drinking water. They are then able 480 
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discriminate between various shapes on a screen, and pick the correct shape that is 481 

associated with a reward. Furthermore, they are able to solve these problems at increasing 482 

speed. The number of attempts needed to reach a level of 46% correct became 483 

significantly fewer in subsequent puzzles compared to the first puzzle. This indicates that 484 

goats were learning to repeat a beneficial behavior (Langbein, et al. 2008, Langbein, et al. 485 

2007). Heifers will exhibit fear behaviors in response to a visual stimulus that has been 486 

conditioned to be an indicator of an electric shock. The sight of the stimulus evokes 487 

memories of an electric shock (Veissier, et al. 1989). All of these examples exhibit the 488 

ability for animals to experience associative learning in response to environmental 489 

stimuli.  490 

1.4.3 The effect of fear on the learning process 491 

While the limbic system contains the food and reward center, it is also 492 

responsible for processing fear. Fear is a necessary emotion for survival; it allows 493 

animals to perceive and react to potential threats. “Fearfulness” in terms of animal 494 

behavior is defined as the likeliness of an individual animal to respond to a variety of 495 

potentially threatening situations. Any situation that is novel to an animal can be 496 

considered a “potentially threatening” situation, and the fearfulness of an animal to 497 

novelty can be measured by their reactivity in a new environment or during a new 498 

experience (Boissy 1995). While assessing a novel situation, animals must draw 499 

information from their memory and compare previous learning experiences to the new 500 

environment. Subtle similarities to a previous situation that was either positive or 501 

negative will influence an animal’s response to a new stimuli. Fear-inducing stimuli can 502 

be classified in to five categories: dangers that are incorporated in the history of the 503 
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species, dangers associated with novelty, learned dangers, danger from conspecifics, and 504 

fear from high intensity stimuli (Boissy 1995). Fear behaviors have been shown to 505 

decrease with repeated exposure to a novel situation. After repeated exposure, an animal 506 

begins to expect the consequences of a behavior.  507 

The predicted error theory of learning postulates that learning occurs due to the 508 

discrepancy between what an animal predicts of an unconditioned stimulus, and what 509 

actually occurs during contact with the unconditioned stimulus. The surprise from the 510 

predicted error facilitates learning and memory formation and an animal distinguishes a 511 

new predicted value of the stimulus (Terao, et al. 2015). A novel object or environment 512 

would likely have a low predicted value and may initially instigate a fear response related 513 

to self-preservation. However, learning via predicted error will form a memory associated 514 

with novel stimuli, and the animal may react differently towards the next novel stimulus. 515 

This phenomenon can be seen in domestic chicks that were allowed access to enrichment 516 

items. Chicks that were allowed access to enrichment items were less likely to exhibit 517 

fear responses to novel objects or environments. In this case, the perceived danger of 518 

novelty was reduced due to prediction error learning associated with enrichment (Jones & 519 

Waddington 1992).  520 

Although there is a physiological difference between the states of fear and 521 

anxiety, they are considered to be similar motivators of the behavioral response of an 522 

animal. When an animal is experiencing fear, it is responding to what it perceives as a 523 

potential threat to its safety. The emotional state of fearfulness may elicit a range of 524 

activities including fight or flight responses such as attacking, fleeing, or even complete 525 

movement inhibition. Vocalizations, pheromone release, facial expressions, and 526 
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piloerection are also considered indicators of fear (Boissy 1995). The intensity of a 527 

response is often correlated with the intensity of the stimulus. For example, when 528 

exposed to a 3-second electric shock prior to food access, food-deprived rats will increase 529 

their consumption of the food. However, when the rats are exposed to an electric shock 530 

for 30 seconds, food consumption was significantly decreased (Strongman, et al. 1970). 531 

These observations suggest that animals experiencing very intense levels of fear or 532 

anxiety will exhibit movement inhibition, which includes the cessation of activities that 533 

are pertinent to survival such as feeding. If an animal is introduced to a novel 534 

environment with a food substance readily available and the animal does not eat, it is 535 

reasonable to conclude that the animal is in a state of intense fear and is experiencing 536 

inhibition of movement. Through an understanding of the psychological effects of fear 537 

and anxiety, it is possible to use an animal’s response to a stressful stimulus as an 538 

accurate measurement of their emotional state. 539 

1.5 Associative Learning in Neonates 540 

Understanding the ability and the process of learning in neonates is crucial to 541 

gathering accurate data from their performance in conditioned place preference and 542 

conditioned place aversion paradigms. The associative learning process is vital in 543 

neonates for forming maternal connections and preferences. After birth, mammalian 544 

mothers tend to orient themselves or their offspring in a way that encourages tactile 545 

contact and nursing. In neonates, teat-seeking behaviors such as repetitive head and oral 546 

movements, are innate reflexes that are reinforced with the reward of milk. Similarly, 547 

behaviors exhibited by the mother to encourage suckling are soon associated with the 548 

reception of milk. When these sensory stimuli are coupled with the act of nursing, the 549 
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highly excitable pleasure center of the brain is activated. This initiates the release of 550 

dopamine, which in turn creates a rapid learning event and a strong association between a 551 

previously unconditioned behavior and the salient food reward. This learning process is 552 

pertinent to the survival of the offspring as the mother's milk is the sole source of 553 

nutrients in the early stages of life (Nowak 2006). The necessity of associative learning in 554 

neonates is illustrated by the response of lambs who were denied teat access up to 12 555 

hours. Initially, teat-seeking behavior was high, representing the typical repetitive head 556 

and oral movements that are associated with teat-seeking behaviors in mammals. 557 

Although lambs received sensory information from their mother such as olfactory and 558 

tactile stimulation, they were not able to associate the salient stimulus of maternal contact 559 

with the positive outcome of nutritional support. Subsequently, teat-seeking behavior 560 

began decreasing significantly at 2 hours post-birth. After lambs were allowed teat 561 

access, teat-seeking behavior increased over time. The increase in teat-seeking behavior 562 

can be attributed to accidental contact with the newly uncovered teats. During contact 563 

with the teat, which is acting as a novel stimulus, there is a release of dopamine in to the 564 

brain. While the novelty of the stimulus promotes dopamine release, contact with the teat 565 

is a rewarding experience for the lamb. Lambs have an innate need to suckle that is 566 

separate from hunger, and contact with a teat would be a salient positive stimulus in 567 

relation to that behavioral need. Teat-seeking then becomes a lucrative action as the 568 

reward of food activates the amygdalofugal pathway and the lamb experiences learning 569 

(Alexander & Williams 1966). The lamb continues to increase this behavior as the reward 570 

maintains or surpasses its “predicted error”. Dopamine release in response to a reward 571 

follows prediction error coding. If a reward surpasses the originally expected value, there 572 
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is an increase in dopamine released. If a reward matches the expected value there is no 573 

change in the amount of dopamine released, and if the reward value is less than expected 574 

there will be a decrease in the dopamine released (Schultz 2010). Considering the 575 

information available about the cognitive ability of neonates, it is evident that using 576 

conditioned place preference and aversion paradigms are a useful tool in many species of 577 

immature animals. 578 

1.6 Assessing the Tolerance of Neonatal Goats to CO2 579 

Although there is currently no literature supporting the problem-solving or 580 

associative learning abilities of neonatal goats, previous research provides supporting 581 

evidence that mature goats are capable of solving problems and neonates are capable of 582 

associative learning. Additionally, goats are especially sensitive to pain and will not 583 

tolerate painful procedures (Galatos 2011). This suggests that if a goat finds a situation 584 

unpleasant, it is likely to show some degree of avoidance behavior when presented again 585 

with the same stimulus. Subsequently, the use of a conditioned place aversion paradigm 586 

will be a relevant, feasible, and accurate test to determine the aversion of neonatal goats 587 

to CO2. 588 

1.6.1 Conditioned place paradigms 589 

In order to properly evaluate the aversion that goat kids may develop to CO2, it 590 

is necessary to determine what reward must be used as a cost comparison. Although there 591 

is a general lack of research considering what goats might perceive as valuable, it is 592 

possible to estimate what stimuli may be most relevant. Goats are gregarious creatures by 593 

nature. When isolated, juvenile goats will perform stress behaviors such as rearing and 594 
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vocalizing which suggests that goats prefer to be nearer to their penmates (Price & Thos 595 

1980). While a kid’s desire to be with conspecifics is valuable, research has also shown 596 

that goats may not be as gregarious as other species, such as sheep. It has been observed 597 

that goats do not have as high of a flocking tendency as sheep do, which suggests that 598 

kids may need a higher value stimulus to enter the unconditioned environment (Lyons, et 599 

al. 1993).  An alternative reward would be access to a milk ration. As mentioned 600 

previously, neonatal animals have a high drive to reach food, and are able to quickly 601 

make the association of a specific stimulus with food. When goat kids are presented with 602 

a milk ration while inside the unconditioned environment, they will begin to associate 603 

that environment with food and the unconditioned environment will become a 604 

conditioned stimulus. Once the kids consistently choose to be in the conditioned 605 

environment, it will be possible to apply the CO2 treatment and determine if exposure to 606 

the gas is an aversive experience. 607 

1.6.2 Gas concentrations and flow rates  608 

One of the biggest components for proper euthanasia using gas is finding the 609 

most appropriate concentration and gas flow rate. The most appropriate concentration and 610 

gas flow rate will produce minimal levels of distress and pain during application. Finding 611 

the least aversive method for administration of inhalant agents has been a continuous 612 

topic of research, and new findings are refining the way the gas euthanasia is utilized. 613 

When using CO2 as a euthanasia agent, animals should be placed in an ambient container, 614 

and the gas should be gradually introduced in to the environment. Rats showed lesser 615 

amounts of distress during displacement with 100% CO2 at a flow rate of 10% per minute 616 

compared to 100% argon gas at a displacement rate of 50% per minute (Burkholder, et al. 617 
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2010). Rats exposed to CO2 at a 20% per minute displacement rate lost consciousness 618 

before nociceptor activation and the onset of gasping and seizures (Hawkins, et al. 2006).  619 

According to the AVMA euthanasia guidelines, CO2 flow rates should range from 10-620 

30% volume displacement per minute (Leary, et al. 2013 p 24-26). The gradual fill 621 

method is recommended for the utilization of CO2 due to evidence that nociceptors are 622 

activated at concentrations of 50% and above. Additionally, animals may remain 623 

conscious for up to 15 seconds in high levels of CO2. For this reason, placing an animal 624 

in to a pre-filled chamber of 100% CO2 is unacceptable (Hawkins, et al. 2006, Leary, et 625 

al. 2013, Wise, et al. 2003). Some literature has suggested that poultry are not as sensitive 626 

to CO2, however 9 birds exhibited withdrawal behavior at 55% CO2 which suggests that 627 

localized nociceptors were activated (McKeegan, et al. 2006). While different species 628 

may produce a wide range of responses to CO2, the sensitive nociceptive pathway seems 629 

to be well conserved. Therefore, the use of concentrations near the common localized 630 

threshold (≤50%) will likely produce positive results during aversion testing of species 631 

where the pain threshold is unknown. 632 

1.7 Research Objectives 633 

Researching and refining any current or potential methods of on-farm 634 

euthanasia will ensure that the most humane and efficient methods will be readily 635 

available to all ruminants. Due to the fact that no current literature addresses the use of 636 

gas euthanasia for ruminants on-farm, it is imperative that this option is investigated for 637 

producers. In order to properly execute a conditioned place aversion model, it is first 638 

necessary to determine whether kids have the ability to problem solve and accomplish 639 

associative learning. Once these results are established, it will be possible to introduce 640 
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CO2 and assess the resulting changes in behavior. The contents of this thesis will cover 641 

the ability of neonatal goats to maneuver a novel environment in order to access a reward, 642 

their ability to retain memory, and their response to a benign, novel odor. Additionally, 643 

goat kids will be exposed to varying levels of CO2 in order to evaluate their initial 644 

response to the gas, as well as any avoidance behaviors exhibited due to conditioned 645 

aversion. The use of neonatal goats for this study will provide beneficial information for 646 

the direct application to goats, and also work as a model for extrapolation to other 647 

ruminant species. 648 
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CHAPTER 2.  1 

 2 

ASSESMENT OF LEARNING ABILITY AND THE EFFECT OF FEAR IN 3 
NEONATAL GOATS 4 

I.W. Withrock, P.J. Plummer, T.A. Shepherd, J.P. Stinn, A.K. Johnson, 5 
H. Xin, C. Wang, J.F. Coetzee, and S.T. Millman 6 

 7 

This chapter is prepared for Animal Welfare 8 

2.1 Abstract 9 

A key component in evaluating inhalant euthanasia is determining the 10 

aversiveness of the gas by conditioned place preference and aversion paradigms. The 11 

objective of this study was to determine the learning ability of goat kids, and if the 12 

presence of a visual obstacle or novel stimulus hinders learning or disrupts previous 13 

learning. A test box was custom built with two chambers connected by a sliding door. 14 

One chamber was vacant while the other held a milk reward. Twenty-four kids were 15 

enrolled in the study. Kids were given 5 minutes acclimation in the control chamber 16 

before the sliding door was open. Kids were then given 5 minutes to travel through the 17 

doorway voluntarily, after which kids were physically assisted. Kids were allotted 10 18 

minutes in the treatment chamber. Twelve kids were tested for 5 days, and then re-tested 19 

with a novel odor after a short break. The remaining 12 kids were tested for 5 days with a 20 

transparent, plastic curtain placed in the doorway. Vocalizations occurring in the control 21 

chamber, and after the sliding door opened, decreased over day for all kids (P <0.0001). 22 

Latency to enter, bottle touch and suckle all decreased over day for all kids (P <0.0001). 23 

Milk consumption increased from day 1 to day 5 for all kids (P <0.0001). Startle, bottle 24 
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engagement and lying behavior did not differ between days (P >0.05). These results 25 

suggest kids are able to learn with and without the presence of visual obstacles, and novel 26 

odor does not disrupt learning. 27 

Keywords: conditioned, fear, goat, kid, learning, neonate 28 

 29 

 30 

 31 

  32 
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2.2 Introduction 33 

Two common models used during euthanasia research are the conditioned place 34 

preference (CPP) and conditioned place aversion (CPA) paradigms. These models are 35 

important when investigating the level of pain or distress an animal might feel during 36 

exposure to a novel stimulus. The CPP and CPA paradigms follow the classical 37 

conditioning process where a potent stimulus is paired with an unconditioned stimulus. 38 

Depending on the nature of the salient stimulus, the test subject will begin to associate the 39 

unconditioned stimulus with positive or negative emotions (Prus et al. 2009). These tests 40 

are especially useful during euthanasia studies because it is possible to assess an animal's 41 

perception of the situation. Using a CPP test followed by a CPA test allows for the 42 

comparison of something that has a high value, i.e. food, enrichment items, or drugs, to 43 

something that has the potential to be aversive. This model is especially useful because it 44 

is possible to grade the level of aversion an animal has to the stimulus. By asking the 45 

animal how much it is willing to “pay” to access the high value stimulus, or forgo to 46 

avoid a noxious environment, it is possible to observe the most direct measure of how the 47 

animal experiences the situation (Dawkins 1990). Being able to collect this data is 48 

particularly relevant during euthanasia studies, as the potential for fear and distress is a 49 

critical factor in determining suitability of the methodology. 50 

Considering the number of neonatal animals that must be euthanized on-farm, 51 

the use of neonatal animals during euthanasia research is imperative. One concern for the 52 

use of neonates is that cognitive development is just beginning, which suggests that they 53 

may not be not as capable as the mature animal to experience associative learning and 54 
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memory formation. If this were accurate, it would be difficult to properly apply a CPP or 55 

CPA test to gather information. However, neonates of many different species have shown 56 

the ability to process environmental cues and compound memories to facilitate learning 57 

(Alexander & Williams 1966, Barr & Rossi 1992, Boissy & Bouissou 1988, Liu et al. 58 

2014, Nowak 2006).  59 

The ability to research neonatal reactions directly is exceptionally pertinent to 60 

the dairy industry, where events of neonatal euthanasia greatly outweigh the euthanasia 61 

of mature animals (USDA 2007). An influx of male offspring that hold little to no value 62 

for the producers contributes to the disproportionate amount of neonatal euthanasia on 63 

dairy operations. When confronted with male offspring that will not be retained for 64 

breeding stock, producers must choose to either finish the animal for meat production or 65 

humanely end its life. Many dairy bull calves end up in the veal industry which has long 66 

been the center of several controversial welfare issues (Suárez et al. 2007, Thomas & 67 

Jordaan 2013). Other calves are exported for finishing which presents welfare issues that 68 

occur during transportation (Cave et al. 2005, Jongman & Butler 2014). For these reasons 69 

among others, producers may choose to euthanize their unwanted bull calves 70 

(Compassion in World Farming 2013). The dairy goat industry has a similar, but perhaps 71 

more dire, situation. The probability of unwanted buck kids being born is increased due 72 

to multiple births, and the market for goat meat in the United States and the United 73 

Kingdom is minimal (Harwood 2010, Liu et al. 2013). Subsequently this leads to an 74 

extensive number of kids euthanized by producers (Humane Slaughter Association 2008). 75 
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As such, further euthanasia studies focusing on the needs of these industries will provide 76 

a direct benefit to the welfare of these species. 77 

Literature concerning the learning ability of domestic goats is limited, however 78 

there is literature supporting the ability of goats to solve problems and draw on past 79 

experiences to drive decision-making (Langbein et al. 2007). Goats have displayed the 80 

ability to solve visual puzzles to achieve a reward, and to recall these memories when 81 

presented with the same problems several days later (Langbein et al. 2008). Goats have 82 

also displayed an ability to discern between benign and harmful food sources. Goats who 83 

were naïve to the intoxication of the poisonous Brazilian plant Ipomoea carnea were 84 

averted from eating the plant after its pairing with lithium chloride (Burritt & Provenza 85 

1989, Oliveira Júnior et al. 2014).  86 

Although the learning ability of mature goats has been documented, data 87 

regarding the learning ability of neonatal kids is insufficient. While kids must be able to 88 

learn and associate maternal cues, little research has been done investigating the 89 

responses of kids to conditioned place preference tests. Consequently, it is necessary to 90 

gather this primary data regarding CPP before utilizing this model in future studies. 91 

Possible obstacles that may hinder the abilities of kids to achieve a conditioned place 92 

preference include the behavioral and physiological effects of fear. Acute stress has been 93 

shown to inhibit CPP (Bali et al. 2015, García-Pardo et al. 2014), and the acute stress of 94 

being isolated and placed in a novel environment may affect the potential for CPP in kids. 95 

Additionally, acute stress may have a strong impact on kid behavior due to their sensitive 96 

nature (Galatos 2011). However, literature has also supported that acute stress enhances a 97 
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salient reward and facilitates conditioned place preference (Brielmaier et al. 2012, Der-98 

Avakian et al. 2005). In consideration of the potential benefit for future euthanasia 99 

studies, the evidence supporting the learning ability of kids merits further investigation. 100 

The overall objective of this study was to determine if fear influences the ability 101 

of kids to problem solve to reliably access a food reward. We hypothesized that trial and 102 

error learning would occur, such that the kids would learn the task to obtain a food 103 

reward and performance would improve over multiple tests.  We also hypothesized that 104 

fear attenuates learning, such that fearful kids would display reduced performance when 105 

compared to non-fearful kids. A secondary objective was to determine the effects of a 106 

novel stimulus on previous learning. We hypothesized the presence of a novel stimulus 107 

would not affect the performance of the previously learned task for non-fearful kids.   108 

2.3 Materials and Methods 109 

The protocol for this experiment was approved by the Iowa State University 110 

(ISU) Institutional Animal Care and Use Committee 111 

2.3.1 Experimental design 112 

A conditioned place preference paradigm was utilized to test the learning 113 

abilities of the test subjects. This experiment was a repeated measures design with each 114 

test subject acting as its own control and each kid was tested individually. Kids were 115 

tested over 5 consecutive days of initial testing, and tests were conducted between the 116 

hours of 1:00pm and 5:30pm after a period of feed deprivation which ranged between 5 117 

to 9.5 hours. Kids were randomly assigned a testing time point, and were consistently 118 
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tested at that time point daily. The experiment was run over 2 trials with twelve kids 119 

assigned to each trial. In trial 1, kids received a 3 to 6 day break after the initial testing 120 

period, and were re-tested once with a novel stimulus (peppermint oil odor) present. In 121 

trial 2, the initial testing was modified to require kids to push through a clear plastic 122 

curtain to access the treatment chamber.  123 

2.3.2 Experimental equipment 124 

A preference testing box (Figure 2.1) was custom designed with two connecting 125 

chambers, defined as “control” and “treatment”, separated by a sliding door. This testing 126 

box was designed for the purpose of evaluating the aversiveness of inhalant euthanasia 127 

gases. Fans were installed in the walls of the box and a continuous flow of ambient air 128 

was introduced in to the system via air inlets attached to the bottom structure of the box. 129 

The inside dimensions of each chamber measured 61 cm width x 61 cm length x 91 cm 130 

height. The side panels of the box were made of opaque, hard plastic. In the control 131 

chamber, plastic gloves were fitted on each side panel to facilitate handling of the animal 132 

when required during the test. These gloves were retracted from the box when not in use. 133 

To enable viewing, clear plastic was used for the doors which were located on the lateral 134 

ends and the top of the box. The floor was covered with rubber floor mats in both 135 

chambers to provide traction. To attract kids to the treatment chamber, two milk bottle 136 

holders were installed and contained 472mL milk bottles that were identical to those used 137 

during daily feeding. 138 

In trial 1, a container filled with cotton swabs saturated with peppermint oil 139 

extract was placed in the conditioned air inlet for the novel stimulus test. In trial 2, the 140 
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doorway separating the chambers was fitted with a plastic curtain (58.4 cm length) made 141 

of 10 transparent PVC strips (2.5 cm width) in addition to the sliding door. 142 

2.3.3 Animal husbandry and enrollment 143 

A total of 24 mixed breed neonatal dairy kids (3 females, 21 males) were 144 

enrolled, sourced from three commercial herds in the Midwest USA. Kids were of 145 

various breeds including Toggenburg, LaMancha, Alpine-Sannen cross, and Nubian.  146 

Kids were collected and enrolled from March through October 2014. Kids were removed 147 

from the dam after birth and bottle-fed prior to enrollment. Kids were acquired between 148 

1-7 days of age to ensure adequate consumption of colostrum, and the mean body weight 149 

upon arrival was 4 ± 0.2 kg. None of the male kids were castrated and no kids were 150 

disbudded. All kids were ear tagged for identification prior to arrival at ISU. 151 

Kids were housed in 3 climate-controlled rooms at ISU Laboratory Animal 152 

Research (LAR) buildings, with a 12-hour light cycle from 6:00am to 6:00pm. Kids were 153 

housed in a 9.3 m2 room that was divided equally into 5 pens to facilitate individual 154 

feeding. Pens were separated using spindle barriers with 5 cm separation between bars 155 

that allowed nose-to-nose contact for social interaction. Each pen contained one heat 156 

lamp, one plastic tub for climbing, and straw bedding for comfort.  157 

Body temperatures were recorded daily using a hand held thermometer (Mabis 158 

Healthcare Inc. Waukegan, IL) and body weights were recorded weekly using a handheld 159 

scale that was accurate to 0.01kg (Pure Fishing, Inc Columbia, SC). All kids received 160 

daily milk rations equal to 18% of their body weight in grams.  Advance milk replacer 161 
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(Milk Specialties Global Eden Prairie, MN) was fed using standard 472mL graduated 162 

lamb milk bottles equipped with Pritchard teats (Pritchard teats, Riverton, New Zealand). 163 

Nine kids were fed 3 times daily during all days of acclimation and testing. Fifteen kids 164 

were fed approximately every 4 hours for the first 4 days due to health concerns, and then 165 

3 times daily. 166 

Upon arrival at LAR, all kids received at least 3 days of acclimation, during 167 

which no experimental procedures were performed. Kids were observed for any health 168 

issues; the acclimation period was extended for kids that exhibited clinical signs of illness 169 

until these signs were no longer present. No kids developed clinical signs of illness 170 

during testing. In addition, kids were required to reach a behavioral start criteria based on 171 

suckling motivation before enrollment in testing. Kids were considered successful in 172 

meeting this criteria if during 4 out of 5 consecutive feedings they actively found and 173 

sucked on the nipple within two minutes of the bottle being placed in the bottle holder.  174 

2.3.4 Testing procedure 175 

Each kid was carried individually from their home pen to the testing room, and 176 

placed in the control chamber. Kids were provided with 5 minutes to acclimate to the 177 

box, after which the sliding door was opened providing access to the treatment chamber. 178 

Kids were given 5 minutes to voluntarily pass through the doorway, after which they 179 

were gently assisted through the doorway using the attached rubber gloves. Once in the 180 

treatment chamber, kids were given 10 minutes access to the entire testing box, during 181 

which they could move freely between treatment and control chambers. After testing 182 

concluded, kids were removed from the box and carried back to their home pen. 183 
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An indoor temperature monitor (AcuRite Lake Geneva, WI) was placed within 184 

the control chamber to record the relative humidity (%) and temperature (C°) of the test 185 

box prior to each test. This environmental data was recorded by the observer for each 186 

individual kid immediately prior to entry. The mean relative humidity inside the box was 187 

36.8% and ranged from 16% to 69%. The mean temperature was 22.2° and ranged from 188 

13.9° to 32.2°. The monitor was removed as each kid was placed in to the box, and 189 

replaced after each test concluded. Between tests the box was cleaned with a disinfectant 190 

(Accel, Virox Technologies Inc., Ontario, Canada). 191 

2.3.5 Behavioral observations 192 

Data was collected via live observation and video recording. Live observation 193 

was gathered by two observers. One observer (observer 1) was positioned on the right 194 

side of the box out of view of the test subject. The second observer (observer 2) was 195 

positioned in front of the treatment chamber so that the kid was visible to facilitate the 196 

recording of direct behavior observations. A black fabric curtain (2.1 m length x 0.9 m 197 

wide) and lighting placement was used to ensure that observer 2 was obstructed from the 198 

kid’s view. 199 

2.3.6 Live observations 200 

Behaviors that were recorded via live observation were selected due to the 201 

difficulties associated with reliably discerning these behaviors on video (Table 2.1). The 202 

latency to enter the treatment chamber was measured using a timer (National Presto IND. 203 

Inc., Eau Claire, WI) after the sliding door was opened until both ears of the kid crossed 204 

the doorway form the control to the treatment chamber. When assistance was needed, 205 
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latency to enter was recorded as 5 minutes. Vocalizations were collected as a counted 206 

event and separated in to 3 categories: control, transition, and treatment. The amount of 207 

milk consumed from each bottle was recorded after each test. 208 

2.3.7 Video observations 209 

Video data was collected using a Noldus Portable Lab (Noldus Information 210 

Technology, Wageningen, NL). Four color Panasonic cameras (WV-CP484, Kadoma, 211 

Japan) were positioned to provide views from top and lateral doors of the control and 212 

treatment chambers (Figure 2.2). The recordings from these cameras were captured onto 213 

a PC using HandiAvi (v4.3, Anderson's Azcendant Software, Tempe, AZ)  at 30 214 

frames/s. Prior to each test, identifying information was presented on a dry erase board to 215 

the camera to identify the date, animal ID, test day, and trial number.  216 

Behavior data was collected from videos by one trained observer who was 217 

blinded to the animal ID, date and test day. Behavioral data was recorded using Observer 218 

(v10.1.548, Noldus Information Technology, Wageningen, NL). A neutral individual 219 

performed the blinding procedures for the video recordings from all tests. The blinding 220 

procedures involved cutting the video recordings to remove identification presented at the 221 

beginning of each video, assigning a random number to each video segment and sorting 222 

for the purpose of providing a random sequence in which videos were to be scored. Seven 223 

videos were selected at random and duplicated within this sequence for the purpose of 224 

determining intra-observer reliability. 225 
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Prior to data collection, the observer was trained to use the Observer program 226 

by repeatedly scoring 2 videos and ethogram from an unrelated study until reaching a 227 

reliability score of k ≥ 0.90 as calculated by the Observer program. After reaching this 228 

level of competence, data collection began using the current videos and ethogram (Table 229 

2.2). Intra-observer reliability averaged k = 0.91. 230 

 2.3.8 Statistical analysis 231 

Behaviors were evaluated based on duration or count data. Behaviors involving 232 

count outcomes e.g. vocalizations, were analyzed using a mixed effect Poisson regression 233 

model. Elimination behaviors were analyzed as binary outcomes by a mixed effect 234 

logistic regression model. Behaviors involving latencies e.g. latency to enter treatment 235 

chamber, were analyzed using mixed effect Cox models, and total milk consumption was 236 

analyzed by a linear mixed model. All linear mixed model analysis was fitted with the 237 

GLIMMIX procedure (SAS Inst. Inc., Cary, NC), while Cox model analysis was fitted 238 

with the PHREG procedure. Each kid was an experimental unit. The fixed effects for data 239 

analysis were: day, startle score, breed, sex, and time of day. Startle score was used as an 240 

indicator of fear and was determined by the sum of each kid’s startle and escape attempts. 241 

The random effect was individual kid identification. The degrees of freedom was 242 

determined by the Kenward-Rogers method, and a P-value of ≤ 0.05 was considered 243 

significant. A Tukey-Kramer adjustment was utilized for multiple comparisons. 244 

 245 

 246 
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2.4 Results 247 

2.4.1 Learning 248 

All kids (n=24) completed the start criteria and were enrolled in the study. On 249 

day 1, the majority of kids (n=16 [66.6%]) needed assistance to enter the treatment 250 

chamber. Once kids entered the treatment chamber voluntarily, no assistance was needed 251 

for the remainder of the trial. Eleven kids required assistance on day 2, 5 kids (20.8%) 252 

required assistance on day 3 and only 1 (4.2%) kid required assistance on day 4. 253 

However, by day 5 all kids learned to enter the treatment chamber without assistance and 254 

consumed milk. 255 

The average latencies to enter, first bottle touch and suckle for day, food 256 

deprivation period, breed, and sex are depicted in Table 2.3. The average latency to enter, 257 

first bottle touch, and suckle decreased over day (P < 0.01). The latency to enter for kids 258 

receiving 9 hours of feed deprivation was 3.5 seconds slower than kids with 9.5 hours (P 259 

= 0.02). However, differences in latency to enter were not observed between any of the 260 

other feed deprivation periods (P > 0.1). Toggenburg kids had a significantly shorter 261 

latency to enter than Nubian kids (P < 0.01). However, only 2 Nubian kids were enrolled 262 

compared to 9 Toggenburg kids. There was a trend for an association between latency to 263 

enter and individual kids (P = 0.08), and there was a significant association between 264 

individual kid and latency to suckle (P < 0.01). There were no other associations between 265 

time of day, kid, breed, or sex and these measures (P > 0.1).  266 
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The duration of bottle engagement and total milk consumed for day, food 267 

deprivation period, breed, and sex are depicted in Table 2.3. The total duration of bottle 268 

engagement did not change over time (P > 0.1). With the exception of 1 male kid, all kids 269 

consumed milk from both bottles on at least 1 test day. During 5 tests, kids consumed all 270 

the milk from one bottle and continued to suck air; these tests were terminated due to 271 

animal welfare concerns. Milk consumption increased over test day (P < 0.01), but time 272 

of day, breed and sex were not significant factors (P > 0.1). 273 

2.4.2 Fear-related behaviors 274 

The number of vocalizations, startles, rears, and duration of lying for day, feed 275 

deprivation period, breed, and sex are presented in Table 2.4. No tests were terminated 276 

early due to concerns of injurious or otherwise extreme fear behavior. Escape attempts 277 

were rare events, occurring only a total of 7 times over all days. Nine kids reared on day 278 

1 (median 20, range 5 to 34), and on day 5 a total of 5 kids reared (median 5, range 2 to 279 

9). Occurrences of elimination ranged from 11 to 18 events per day, with a mean of < 1 280 

event per kid per day. Lying behavior did not differ between days (P > 0.1). 281 

Vocalization was exhibited by all kids on all test days. Control vocalizations 282 

decreased over test days (P < 0.01), with days 4 (P < 0.01) and 5 (P < 0.01) differing 283 

significantly from day 1. Transition vocalizations decreased over test days, with day 1 284 

significantly different from all other test days (P < 0.01). Time of day, kid, breed and sex 285 

were not associated with control or transition vocalizations (P > 0.1). Thirteen kids (54%) 286 

vocalized in the treatment chamber on day 1 (median 8, range 0 to 117), and on day 5 a 287 

total of 7 kids (29%) vocalized in the treatment chamber (median 16, range 0 to 36). 288 
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Startle score for each kid was determined by the cumulative number of startle 289 

events of an individual kid over all test days. Startle scores were positively skewed with a 290 

minimum of 0 and a maximum of 24 (Figure 2.4). The number of startle events did not 291 

differ over time (P > 0.1). Female kids had higher startle scores than males (P = 0.05), 292 

although this was likely due to the small sample of female kids. Startle score was not 293 

associated with control or transition vocalizations (P > 0.1; Figure 2.5), and was not 294 

associated with latencies to enter, bottle touch and suckle (P > 0.1; Figure 2.6). Startle 295 

score was not associated with the amount of time spent engaging the milk bottles or milk 296 

consumption, and startle score was not associated with elimination behavior or lying (P > 297 

0.1).  298 

During Trial 1 (novel stimulus test), 1 male Alpine cross kid made an escape 299 

attempt on both days, while 1 male Toggenburg made a single escape attempt on day 6. 300 

Elimination was observed in 4 kids on day 5 and 2 kids on day 6. The number of 301 

vocalizations, startles, and rears during trial 1 are presented in Table 2.5. Vocalizations 302 

did not differ between days 5 and 6, and there were no associations with time of day, kid, 303 

breed or sex (P > 0.1). The number of startles was significantly higher on day 6 (P < 304 

0.01), the number of rears and duration of lying did not differ (P > 0.1). 305 

All kids in trial 1 (n=12) entered the treatment chamber in the presence of the 306 

novel stimulus on day 6.  The average latency to enter was longer on day 5 than day 6 by 307 

2.9 seconds (P < 0.01; Table 2.6). Kids with 8.5 hours feed deprivation had the shortest 308 

latency to enter (P =0.04). There was an association between latency to enter and 309 

individual kids (P = 0.03), but not for breed or sex (P > 0.1). The latency to first bottle 310 
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touch did not differ between days and was not associated with time of day, kid, breed or 311 

sex (P > 0.1). Latency to suckle was significantly longer on day 5 than day 6 (P < 0.01). 312 

There was a trend for an association between latency to suckle and feed deprivation (P = 313 

0.07), but not breed or sex (P > 0.1). There was no difference in milk consumption 314 

between day 5 and day 6 (P = 0.1; Table 2.6). 315 

All kids in trial 2 (n=12) crossed through the curtain to access the treatment 316 

chamber within 5 days. On day 1, all kids needed assistance to cross the curtain to the 317 

treatment chamber, and all the kids that needed assistance on day 3 or 4 were all enrolled 318 

in this trial. The median latency to enter the treatment chamber was 178.5 seconds and 319 

ranged from 1 seconds to 300 seconds (Figure 2.7). The median latency to the first bottle 320 

touch was 2 seconds for both trials, and to suckle was 5 seconds for both trials.  321 

During trial 2, 1 male Alpine cross made a single escape attempt on day 2, and 1 322 

male Alpine cross and 1 male LaMancha made a single escape attempt on day 5. 323 

Elimination was observed in 5 kids on day 1 and 9 kids on day 5. Fear behaviors for trial 324 

2 are presented in Table 2.7. Control vocalizations averaged 117.6 ± 19 on day 1, and 325 

102.6 ± 13.8 on day 5. Mean transition vocalizations were 72.7 ± 12 on day 1, and 2 ± 326 

0.8 on day 5. Mean treatment vocalizations were 6.7 ± 4.1 on day 1, and 3 ± 0.8 on day 5. 327 

The average number of startles on day 1 was 0.7 ± 0.2 on day 1, and 0.8 ± 0.2 on day 5. 328 

No rears occurred on day 1, and 1.5 ± 0.7 rears occurred on day 5. 329 

 330 

 331 
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2.5 Discussion 332 

Live and video data were successfully recorded for all kids on all test days. The 333 

observer charged with collecting all vocalizations and latency to enter data was a rotation 334 

of various trained lab members and employees, and the data was consistent between 335 

observers. Fifteen of the 24 kids exhibited signs of illness including fever and moderate 336 

to severe diarrhea upon arrival at LAR. Four kids received saline solution, administered 337 

either intravenously or subcutaneously, due to severe dehydration. Five kids showed 338 

signs of severe diarrhea and received treatment with Naxcel until symptoms improved; 4 339 

kids required 3 days of treatment and 1 kid required 5. One kid received treatment with 340 

Banamine upon arrival for a temperature above 104°. Testing occurred simultaneously 341 

with Naxcel treatment, and it is possible that the performance of these 5 kids was 342 

impaired by illness (Dilger & Johnson 2010). The performance of these kids may have 343 

also been impaired in relation to the other 7 kids from trial 2 due to a change in curtain 344 

resistance between the groups.  345 

Data collected by direct observation was done so to ensure that small 346 

movements or angle-dependent behaviors that would not be visible on video were 347 

recorded accurately. Data collected by video observation included behaviors that 348 

occurred in fast succession, prolonged duration, or were not visible to either observer. 349 

The collected behaviors were either considered to be associated with fear, learning, or 350 

normal expressions of the domestic goat. Behaviors were categorized based on previous 351 

research of domestic goats and other species. Behaviors associated with fear included 352 

vocalization and rearing (Lyons et al. 1993, Price & Thos 1980, Siebert et al. 2011). 353 
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Learning behaviors such as the latency to enter the treatment chamber and latency to 354 

suckle focused on the amount of time needed to react to a previously encountered 355 

stimulus (Langbein et al. 2008, Langbein et al. 2007, Ruediger et al. 2012). 356 

The choice of a conditioned place preference model was appropriate in 357 

determining the capability and motivation of kids to access a milk reward in the presence 358 

of exogenous stress. During CPP testing for trials 1 and 2, the milk reward successfully 359 

acted as a stimulus to motivate kids to move through the test box. The approach-360 

avoidance model was successful in evaluating the motivation of kids to access a known 361 

food reward in the presence of a perceived hazard. Overall, kids were able to navigate the 362 

test box and engage the milk bottles with increasing efficiency over test days. All 24 kids 363 

presented signs of learning as the latencies to enter the treatment chamber, first bottle 364 

touch and latency to suckle decreased from test days 1 to day 5. In trial 1, the novel 365 

peppermint odor did not appear to be a potent negative stimulus in relation to kids’ 366 

motivation to reach the milk bottles. In trial 2, the curtain did appear to act as a potent 367 

negative stimulus in relation to kids’ motivation in reaching the milk bottles. The fact that 368 

latencies to first bottle touch and suckle did not differ between trials indicates that the 369 

visual obstacle of the curtain only impaired performance related to gaining access to the 370 

treatment chamber and not locating the milk bottles. The results from this study indicate 371 

that kids are able to solve a simple problem to access a food reward despite various 372 

stressors. 373 

The learning process appeared to be uniform between all 24 kids. The average 374 

time for all latencies decreased across test days as kids were able to recall memories from 375 
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previous days and were motivated to access the milk. All kids learned to travel through 376 

the test box by trial and error learning. This learning style may be conserved in domestic 377 

goats and other ruminants evidenced by the trial and error grazing pattern that many 378 

ruminants employ to test the palatability and safety of novel plants (Burritt & Provenza 379 

1989). The expression of fear behavior was not uniform across individual kids nor was it 380 

uniform between sexes. Startle score was likely influenced by individual genetics and 381 

experiences. Although female kids demonstrated higher startle scores than males, this 382 

interpretation should be taken cautiously because only 3 female kids were enrolled out of 383 

24.  384 

2.5.1 Interpretation of learning performance 385 

The learning outcomes of this study coincide with other instances of learning 386 

present in the current literature. As the kid is placed in to a novel environment its 387 

responses are initially driven by the parasympathetic nervous system and based on the 388 

desire to survive. During this period of stress, it is difficult to approach a task using 389 

cognitive skill instead of purely stimulus reaction. On test day 1, only 8 of 24 kids 390 

voluntarily entered the treatment chamber. The unwillingness of most kids to travel 391 

through the doorway, even when no curtain was present, shows that the motivation to 392 

explore a novel environment was minimal compared to the perceived danger of the test 393 

chamber. These findings are in line with studies that also found stress to be a mitigating 394 

factor in problem solving and motivation (Doyle et al. 2014, Langbein et al. 2006, Welp 395 

et al. 2004). Similar to the outcomes in these studies, the latency to enter the treatment 396 

chamber decreased on subsequent test days. As these kids were guided to the milk they 397 
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became highly motivated to access the reward, and the predicted outcome of approaching 398 

the treatment chamber changed. This indicates that with repeated exposure, the perceived 399 

threat of the test chamber declined and kids were able to react to the stimulus in a more 400 

discerning manner.  401 

Through repeated exposure to the environment and trial-and-error learning, kids 402 

were able to evolve their strategies from random searching to localized searching to 403 

direct and purposeful movement towards the treatment chamber (Langbein et al. 2007, 404 

Ruediger et al. 2012). Kids exhibited similar performance in regards to latency to first 405 

bottle touch and latency to suckle, although these latencies were greatly reduced 406 

compared to latency to enter the treatment chamber. This may be due to the strong teat 407 

seeking behavior exhibited by neonates and the exceptionally potent visual stimulus of 408 

the milk bottle (Alexander & Williams 1966, Tanaka et al. 1998). The kid that never 409 

consumed milk from both bottles within a single test was likely satiated with 472mL of 410 

milk, and exploratory behavior had a higher value than did the excess milk (Ferreira et al. 411 

2006). The results of this study provides additional data to support the idea that neonatal 412 

animals are capable of associative learning and problem solving (Dilger & Johnson 2010, 413 

Drake et al. 2011, Rohde & Gonyou , Webb et al. 2015). 414 

2.5.2 Interpretation of fear indicators 415 

In this study, the overall fear level of kids was relatively low and was likely due 416 

to the regular handling of kids through husbandry and testing procedures. Prolonged 417 

instances of handling early in life may make animals less reactive to novel situations 418 

(Boissy & Bouissou 1988, Oliveira et al. 2015, Stamatakis et al. 2008). Escaping from an 419 
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environment perceived as threatening is a relatively well conserved behavior, and the 420 

minimal number of escape attempts observed represents this tempered fear level (Barnard 421 

et al. 2015, Chojnacki et al. 2014, Sadler et al. 2014). The vocalizations recorded may 422 

have been due to the stress of social isolation or frustration of an inability to reach the 423 

milk (Manteuffel, et al. 2004, Price & Thos 1980, Siebert et al. 2011). It did appear that 424 

vocalizations were an appropriate measure of fear in this study based on their significant 425 

decrease over time. In contrast to previous data, and in support of the current hypothesis, 426 

kids did appear to become habituated to the test box (Siebert et al. 2011). This is 427 

supported by the decreasing amount of vocalizations across test days. 428 

Habituation to the novel environment is likely due to the positive association 429 

between the test box and milk access. Additionally, wild goats tend to be out of sight of 430 

their conspecifics while feeding, a characteristic that may facilitate the habituation of 431 

domestic kids to social isolation (Price & Thos 1980). In contrast to vocalizations, rearing 432 

behavior did not follow the expected pattern of reduction after habituation. It is possible 433 

that rearing behavior was related to social isolation initially, but then was based in 434 

investigatory behavior or searching strategy. It is also possible that rearing behavior 435 

remained consistent due to olfactory evidence of conspecifics that lingered inside the box 436 

between tests (Siebert et al. 2011).  437 

Although startle behavior did not decrease over time, there was a wide range of 438 

expression between kids. However, there was no relevance of startle score in the 439 

statistical model. This indicates two possibilities: the number of startles exhibited by a 440 
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kid is not an appropriate measure of fear, or a fearful personality type does not have an 441 

inhibiting effect on a kid’s learning ability.  442 

2.5.3 Association of fear and learning 443 

Acute stress, such as social isolation, has the ability to inhibit learning (Bali et 444 

al. 2015, Doyle et al. 2014, Frisone et al. 2002, Langbein et al. 2006, Passecker et al. 445 

2014, Welp et al. 2004). The lack of successful performance on the initial test days may 446 

be caused by the acute stress of social isolation coupled with the stress a novel 447 

environment. Additionally, the curtain in trial 2 presented a visual, as well as tactile, 448 

obstacle and likely incited feelings of fear. The perceived threat of the curtain may have 449 

inhibited kids from employing the appropriate search strategies to facilitate learning.   450 

The concept of “learned helplessness” is a coping mechanism that manifests 451 

during uncontrollable stress. Instead of attempting to escape or mitigate the stress, the 452 

animal does nothing and endures the stressor (Chourbaji et al. 2005). Fearful animals 453 

may be more prone to experience learned helplessness, and subsequently more likely to 454 

endure a stressor rather than be proactive about the situation. However there was no 455 

change in lying behavior, a passive coping mechanism, over test days which indicates 456 

that learned helplessness does not fully explain the kids’ early lackluster performance 457 

(Siebert et al. 2011).  458 

Although startle score was unexpectedly irrelevant, it is possible that kids with 459 

higher startle scores are more fearful but also associated with the ‘avoider’ personality 460 

type observed in goats. The main characteristic of the avoider personality is reactivity, 461 
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and goats with this personality type will move quickly away from agonistic and 462 

nonagonistic conspecifics. It is logical to expect these goats may show more fearful 463 

behaviors, such as a startle or withdrawal response. However, avoider goats were able to 464 

solve a novel T-maze faster than their aggressive penmates (Pascual-Alonso et al. 2013). 465 

This suggests that although acute stress has an inhibiting effect of kids’ learning, a more 466 

fearful personality type does not have the same effect. Further research concerning 467 

fearfulness and personality types would provide a more in-depth understanding of 468 

individual differences in learning between kids.   469 

2.5.4 Potential for future use 470 

The results of this study provide supporting evidence regarding the problem 471 

solving capabilities of the domestic kid, as well as the relationship between fear and 472 

learning. This knowledge is beneficial for future use in research as well as practical 473 

settings. In the practical setting, information concerning markers for a kid’s personality 474 

that are associated with their ability to learn may assist producers in neonatal husbandry 475 

decisions. Additionally, the considerable fear of the novel visual stimulus may provide 476 

information to aid in future goat husbandry decisions or training. The results of this study 477 

are also relevant for future research of the learning ability of neonates, and presents novel 478 

data that supports the use of kids as a practical animal model. This study supports 479 

previous data concerning the inhibiting effect acute stress has on learning, but does not 480 

support the idea that individual fearfulness has an effect on learning ability. These results 481 

provide a strong foundation for the use of the kid in conditioned place preference, 482 
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approach-avoidance, and other learning based paradigms, and can be used to guide future 483 

studies that use the kid as an animal model. 484 

2.6 Animal Welfare Implications 485 

The basis for this study was to confirm the ability of kids to learn and form 486 

associations in the conditioned place preference paradigm. Kids proved to be adept at 487 

employing learning strategies to access the food reward. Furthermore, kids were highly 488 

motivated by the reward and able to overcome a fear-inducing obstacle to gain access. 489 

The lack of response to the novel odor suggests that visual and tactile, rather than 490 

olfactory, stimuli are more inclined to elicit kid fear responses. The kid has shown the 491 

ability to overcome the necessary obstacles that may impede an investigation of the 492 

aversiveness of carbon dioxide (CO2) and as such, would be an advantageous animal 493 

model to assess the value of CO2 as a euthanasia agent in ruminants. By employing 494 

conditioned place and approach-avoidance paradigms, it will be possible to evaluate the 495 

perception of CO2 by kids and subsequently judge the merit of further investigation in to 496 

the topic. 497 

 498 
 499 
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CHAPTER 2 TABLES 680 
Table 2.1 Ethogram used for kid behavior collected during live observation during 681 
preference testing. 682 

Measure 

Behavior 

Category 

Variable 

type Description 

Latency to 

enter Learning 

 

Latency 

Both ears of the kid break the plane of the 

treatment chamber from the control chamber. 

Latency to 

first bottle 

touch Learning 

 

Latency 

The time from entry in to the treatment 

chamber to first deliberate touch of any part 

of the bottle using the nose, mouth or head 

Latency to 

suckle Learning 

 

Latency 

Time from entry in to the treatment chamber 

to active consumption of milk from the bottle 

Use of both 

bottles Learning 

 

Binary The kid suckled from both bottles (yes/no) 

Milk 

consumption Learning 

 

 

Count 

The total amount of milk consumed from 

both bottles during the 10-minute treatment 

period 

Elimination Fear Binomial 

Any act of urination or defecation within the 

control or treatment chambers of the box 

(yes/no). 

Control 

vocalization Fear Count 

Vocalizations that occur in the control 

chamber of the box before the sliding door is 

opened. 

Transition 

vocalization Fear Count 

Vocalizations that occur in the control 

chamber of the box after the sliding door is 

opened, but before the kid enters the 

treatment chamber. 

Treatment 

vocalization Fear Count 

Vocalizations that occur in either chamber 

after the kid has entered the treatment 

chamber. 

 683 
Table 2.2 Ethogram used for kid behavior collected during video observation during 684 
preference testing. 685 

Measure 

Behavior 

Category 

Variable 

type Description 

Bottle 

engage Normal Continuous 

Any interaction with the bottle including 

oral contact, nursing, and butting. 

Escape 

attempt Fear Count 

Coordinated jump towards the top of the 

box, all 4 hooves leave ground. 

Rear Fear Count Weight-bearing on hind limbs only. 

Lying Normal Continuous Weight-bearing on no limbs. 

Startle Fear Count Lateral jump or fast withdrawal. 

Startle 

Score Fear Count 

Cumulative number of startles over all days 

per kid. 

686 
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Table 2.3 Raw means ± SE for latencies to enter treatment chamber (s), first bottle touch 687 

(s), and suckle (s), total milk consumed (mL), and duration of bottle engage (s) for all 688 

kids (n=24) by day, feed deprivation period (d.p.), breed, and sex during preference 689 

testing. 690 

Test Day Enter 

Bottle 

Touch Suckle 

Milk 

Consumed 

Bottle 

Engage 

1 

235.2 ± 

23.2A 45.8 ± 24.9A 

70.4 ± 

24.7A 440.6 ± 26.6A 

443.3 ± 

26.8A 

2 

173.4 ± 

26.7B 3.9 ± 1.1C 

33.6 ± 

24.7C 485 ± 32.5A 

443.3 ± 

26.1A 

3 92.5 ± 23.9C 8.2 ± 5.9C 12.9 ± 6.4C 535.3 ± 23.7B 

435.6 ± 

21.2A 

4 39.8 ± 14.5C 2.83 ± 3.6C 7.4 ± 1.6C 573.7 ± 26.6B 

431.2 ± 

19.6A 

5 12.3 ± 5.9C 1.8 ± 0.2C 4.2 ± 0.4C 612.2 ± 26.6C 

426.7 ± 

21.1A 

d.p.      

5 

146.8 ± 

64.1A 7.2 ± 6.2A 14.2 ± 9.3A 621 ± 38.4A 

442.8 ± 

21A 

5.5 161 ± 65.7A 5 ± 3.8A 

39.6 ± 

31.4A 656.5 ± 59.1A 

452 ± 

25.2A 

6 

138.8 ± 

61.1A 4.6 ± 2A 13.2 ± 4.2A 455.4 ± 17.7A 

385.9 ± 

38.8A 

6.5 83.6 ± 30.3A 56.2 ± 39.9A 

99.3 ± 

53.5A 473.2 ± 53.2A 

406.9 ± 

44.3A 

7 87.1 ± 26.1A 10.9 ± 7A 20.2 ± 8.7A 538.2 ± 23.7A 

482.9 ± 

18.9A 

7.5 

103.6 ± 

29.2A 6.1 ± 2.1A 17.2 ± 5.7A 600.3 ± 20.7A 

479.1 ± 

26.1A  

8 82.1 ± 26.5A 4.1 ± 1.1A 8.5 ± 1.6A 482 ± 41.4A 

436.6 ± 

23.6A 

8.5 88.1 ± 34.3A 2.5 ± 0.6A 9.1 ± 3.97A 544.2 ± 35.5A 

422.8 ± 

19A 

9 

239.9 ± 

31.7B 4.1 ± 1.7A 11.9 ± 3.4A 485 ± 26.6A 

376.2 ± 

37.1A 

9.5 

122.4 ± 

72.5A 14.4 ± 13.2A 

16.8 ± 

12.8A 452.5 ± 56.2 A 

347.1 ± 

37.8A 

 691 

 692 

 693 

 694 
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Table 2.3 continued 695 

Breed      

 

Alpine 105.9 ± 41A 9.7 ± 7.2A 17.7 ± 10.1A 564.9 ± 38.4A 

421.7 ± 

25.3A 

LaMancha 192.7 ± 80.9A 2.3 ± 1.1A 12.9 ± 14.7A 511.6 ± 59.1A 

359 ± 

57.8A 

Nubian 210.9 ± 88.2C 3.3 ± 1.8A 10.5 ± 7.9A 411.1 ± 91.7A 

443 ± 

70.8A 

Toggenburg 66.3 ± 33.2A 21.1 ± 30.3A 42.2 ± 41.7A 520.5 ± 56.2A 

475.9 ± 

44A 

Sex      

Male 112.3 ± 28.3A 13.1 ± 13.4A 27.3 ± 18.7A 529.4 ± 32.5A 

431.2 ± 

23.9A 

Female 98.7 ± 71.9A 8.3 ± 5.9A 14.3 ± 8.7A 529.4 ± 50.3A 

469.5 ± 

71.7A 

A indicates P > 0.1; B indicates P < 0.05; C indicates P < 0.01 

 696 

Table 2.4 Raw means ± SE of fear behaviors for all kids (n=24) by day, feed deprivation 697 

period (d.p.), breed, and sex during preference testing. 698 

 Vocalizationsa    

Test day Control Transition Treatment Startle Rear Lying 

1 

125.9 ± 

12.7A 46.4 ± 9.3A 15.2 ± 5.9 

1.2 ± 

0.4A 

7.5 ± 

2.4 

25.4 ± 

16.3A 

2 

107.9 ± 

9.6A 27.4 ± 7.1C 6.9 ± 3.6 

1.9 ± 

0.4A 

4.8 ± 

0.9 

18.9 ± 

12A 

3 

101.5 ± 

8.6A 17.2 ± 5.3C 6 ± 3 

1.7 ± 

0.5A 

1.9 ± 

0.9 

6.8 ± 

4.5A 

4 

94.2 ± 

8.3C 9.9 ± 4.2C 3.4 ± 1.5 

0.8 ± 

0.2A 

3.5 ± 

1.9 

3.3 ± 

3A 

5 

91.3 ± 

7.7C 1.5 ± 0.4C 5.1 ± 2.1 

0.8 ± 

0.15A 

1.1 ± 

0.5 

0.5 ± 

0.5A 

d.p.       

5 

135.6 ± 

23.5A 33.4 ± 13.7A 0 ± 0 

1.4 ± 

0.7A 

9.8 ± 

1.2 0 ± 0A 

5.5 

92.2 ± 

10.5A 14.2 ± 6.6A 0 ± 0 

3.2 ± 

1.2A 

1.8 ± 

1.8 

27 ± 

21.3A 

6 

105.8 ± 

12.1A 24.6 ± 11.4A 1.6 ± 1.6 

0.4 ± 

0.2A 0 ± 0 

17.1 ± 

17.1A 

6.5 

110.7 ± 

9.9A 6.7 ± 3.2A 12.8 ± 3.8 

0.9 ± 

0.3A 

1.3 ± 

0.6 

40 ± 

20.4A 

 699 
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Table 2.4 continued 700 

7 

88.7 ± 

11.4A 8.6 ± 2.8A 0.2 ± 0.1 

0.8 ± 

0.2A 

1.3 ± 

0.7 

0.4 ± 

0.4A 

 

7.5 

114.7 ± 

13.1A 20.9 ± 8.6A 18.8 ± 6.3 

2.3 ± 

0.7A 

3.3 ± 

1.3 0 ± 0A  

8 

92.2 ± 

7.1A 22.3 ± 8.2A 1.7 ± 1.3 

0.5 ± 

0.2A 

5.2 ± 

2.2 

2.6 ± 

2.6A 

8.5 

119.7 ± 

16.4A 22.8 ± 11.2A 15.8 ± 7.1 1 ± 0.3A 

9.3 ± 

3.6 

29.1 ± 

24A 

9 

111.1 ± 

13.4B 46.6 ± 12.1A 2.3 ± 2 

1.3 ± 

0.5A 

0.8 ± 

0.8 0 ± 0A 

9.5 

70.8 ± 

4.8A 30.2 ± 23.7A 1.6 ± 1.4 3 ± 1.3A 

6.2 ± 

1.8 0 ± 0A 

Breed       

Alpine 

84.2 ± 

12.8A 18.2 ± 9.3A 4.6 ± 5.8 

1.62 ± 

0.7A  

3.2 ± 

1.4 

14.8 ± 

17.3A 

LaMancha 

165.5 ± 

22.5A 54.3 ± 30.3A 8.3 ± 8.5 

1.9 ± 

1.6A 

11.9 ± 

7.7 0 ± 0A 

Nubian 

103.3 ± 

22.9A 45.4 ± 26A 2.6 ± 5.7 

0.7 ± 

0.6A 0 ± 0 

5.2 ± 

11.6A 

Toggenburg 

106.1 ± 

14.3A 6.2 ± 3.5A 11.1 ± 6.3 

0.8 ± 

0.3A 

2.5 ± 

2.3 

11.6 ± 

15.9A 

Sex       

Male 

106.3 ± 

10.8A 20.8 ± 7.3A 6.4 ± 3.1 1.1 ± 0.4 

3.3 ± 

1.5 

12.5 ± 

10.7A 

Female 89 ± 16.8A 18.3 ± 18.3A 13.6 ± 18.7 

2.3 ± 

1.5B 

6.7 ± 

6.7 0 ± 0A 
 701 

A indicates P > 0.1; B indicates P < 0.05; C indicates P < 0.01 702 
a Control vocalizations are vocalizations that occurred within the control chamber of the 703 

preference testing box, transition vocalizations occurred after the sliding door was opened 704 
but before entry to the treatment chamber, and treatment vocalizations occurred after the 705 
kid had crossed through the doorway. 706 

  707 
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Table 2.5 Raw means ± SE of fear behaviors for kids (n=12) in trial 1 (novel peppermint 

odor) by test day, feed deprivation period (d.p.), breed, and sex during novel stimulus 

test. 

 Vocalizations*    

Test daya Control Transition Treatment Startle Rear Lying 

5 80 ± 5.7A 1 ± 0.3 7.3 ± 3 

0.6 ± 

0.3A 

7.4 ± 

3.1A 

1 ± 

0.9A 

6 83.5 ± 9.4A 0.2 ± 0.1 3.9 ± 1.7 

1.2 ± 

0.4C 

14.6 ± 

3.6b 

3 ± 

2.4A 

d.p.       

6.5 93.8 ± 9.1A 0.8 ± 0.4 9.7 ± 5 

0.3 ± 

0.3A 

10.8 ± 

4.9A 

1.9 ± 

1.8A 

7 

82.5 ± 

13.5A 0.8 ± 0.5 0 ± 0 

0.8 ± 

0.3A 

8.5 ± 

2.8A 

4.6 ± 

4.6A 

7.5 

61.2 ± 

10.2A 0.2 ± 0.2 7.8 ± 3.5 

1.7 ± 

0.7b 8 ± 4.6A 0 ± 0A 

8 80.8 ± 3.6A 0.5 ± 0.3 1.3 ± 0.9 

0.8 ± 

0.5A 

16 ± 

7.9A 

2.2 ± 

2.2A 

8.5 107 ± 8A 0.5 ± 0.5 12 ± 2 

0.5 ± 

0.5A 18 ± 18A 0 ± 0A 

Breed       

Alpine 

60.3 ± 

10.6A 0 ± 0 2.7 ± 3.8 

0.8 ± 

0.8A 

17.2 ± 

4.6A 

4.7 ± 

6.5A 

Toggenburg 88.9 ± 7.9A 0.8 ± 0.3 6.6 ± 2.8 

0.9 ± 

0.4A 

8.9 ± 

4.2A 

1.1 ± 

1.1A 

Sex       

Male 84 ± 8.8A 0.7 ± 0.3 5.7 ± 2.8 

0.7 ± 

0.3A 

8.8 ± 

3.5A 0 ± 0A 

Female 

70.8 ± 

10.3A 0 ± 0 5 ± 5.3 

1.8 ± 

0.9A 

22.3 ± 

7.1A 

2.4 ± 

2.1A 
A indicates P > 0.1; b indicates P < 0.1; B indicates P < 0.05; C indicates P < 0.01 708 
a Day 5 testing was ambient conditions, day 6 testing introduced peppermint oil 709 
* Control vocalizations are vocalizations that occurred within the control chamber of the 710 

preference testing box, transition vocalizations occurred after the sliding door was opened 711 
but before entry to the treatment chamber, and treatment vocalizations occurred after the 712 
kid had crossed through the doorway. 713 
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Table 2.6 Raw means ± SE for latencies to enter the treatment chamber (s), first bottle 

touch (s) and latency to suckle (s), and total milk consumed (mL) for kids (n=12) by test 

day, feed deprivation period (d.p.), breed, and sex in trial 1 (novel peppermint odor) 

during preference testing. 

Test daya Entry Bottle Touch Suckle Milk Consumed 

5 5.7 ± 1.1 1.8 ± 0.3A 4.3 ± 0.7 632.9 ± 26.6A 

6 2.8 ± 0.4C 1.6 ± 0.2A 2.9 ± 0.5C 683.1 ± 29.6A 

d.p.     

6.5 6.5 ± 1.8A 2 ± 0.4A 4.2 ± 1.2A 677.2 ± 35.5A 

7 3.5 ± 1.4A 2.2 ± 0.5A 4 ± 0.7A 677.2 ± 23.7A 

7.5 3.5 ± 0.7A 1.5 ± 0.3A 3.2 ± 0.9A 683.1 ± 50.3A 

8 4 ± 0.4A 1.3 ± 0.3A 4 ± 1.2A 520.5 ± 26.6A 

8.5 2.5 ± 0.5B 1 ± 0A 1.5 ± 0.5b 735.3 ± 29.6A 

Breed     

Alpine 4.7 ± 3.1A 1.7 ± 0.5A 3.5 ± 1A 21.3 ± 0.9A 

Toggenburg 4.1 ± 0.6A 1.7 ± 0.3A 3.7 ± 0.7A 22.6 ± 1.2A 

Sex     

Male 4.3 ± 1.1A 1.7 ± 0.3A 3.6 ± 0.7A 22.8 ± 1.1A 

Female 4.3 ± 1.1A 1.8 ± 0.7A 3.8 ± 1.7A 19.9 ± 1A 

A indicates P > 0.1; b indicates P = 0.07; B indicates P < 0.05; C indicates P < 0.01 
a Day 5 testing was ambient conditions, day 6 testing introduced peppermint oil 

 714 

Table 2.7 Raw means ± SE of fear behaviors for kids (n=12) by day in trial 2 (visual 715 

stimulus test) during preference testing. 716 

 
Vocalizations* 

 
 

Test day Control Transition Treatment Startle Rear 

1 117.6 ± 19 72.7 ± 12 6.7 ± 4.1 0.7 ± 0.2 0 ± 0 

2 111 ± 14.2 48.3 ± 11.2 0.8 ± 0.7 2.3 ± 0.8 6.4 ± 1.4 

3 114.5 ± 13.5 30.2 ± 9.2 3.1 ± 2 1.7 ± 0.7 2.9 ± 1.6 

4 99.6 ± 13 17.2 ± 7.9 0.3 ± 0.3 0.8 ± 0.3 2.5 ± 2.2 

5 102.6 ± 13.8 2 ± 0.8 3 ± 0.8 0.8 ± 0.2 1.5 ± 0.7 

* Control vocalizations are vocalizations that occurred within the control chamber of the 

preference testing box, transition vocalizations occurred after the sliding door was opened 

but before entry to the treatment chamber, and treatment vocalizations occurred after the 

kid had crossed through the doorway.   
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CHAPTER 2 FIGURES 

717 
Figure 2.1 Blueprint demonstrating dual (control and treatment) chamber preference 718 

testing box used for conditioned place preference testing of kids (n=24).  719 

 

720 

Rubber gloves 
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 721 
 

Figure 2.2 Test room setup showing kid in preference testing box, observer to right of 

test box, exhaust system, camera position, lighting placement and black curtains used for 

obscuring the observer from kid’s view during preference testing of kids (n=24). 

  722 
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 723 
Figure 2.3 Total number of startles exhibited by each kid (n=24) during preference 

testing. Startle score represents the cumulative number of startles by each kid over all test 

days. 

 

 

 724 
Figure 2.4 Average number of vocalizations (±SE) for all kids (n=24) in the control 725 

chamber, transition period, and treatment chamber by number of startles displayed during 726 

preference testing. 727 
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 728 
Figure 2.5 Average latencies (±SE) to enter treatment chamber, bottle touch and suckle 729 
for all kids (n=24) by number of startles displayed during preference testing. 730 
 731 

 732 

 733 
Figure 2.6 Average latencies (±SE) to enter treatment chamber, bottle touch and suckle 734 

during preference testing for kids in trial 2 (n=12) by day. 735 
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CHAPTER 3. 

 

RESPONSES OF NEONATAL GOATS (KIDS) TO DIFFERENT CONCENTRATIONS 

OF CARBON DIOXIDE GAS 

IW Withrock, PJ Plummer, TA Shepherd, AK Johnson, H Xin, JF Coetzee, ST Millman 

 

This chapter will be prepared for the Journal of Dairy Science 

3.1 ABSTRACT 

The objective of this study was to analyze the suitability of carbon dioxide (CO2) as an 

agent for euthanasia of kids. A test box was custom designed to maintain two connected 

chambers at static atmospheric concentrations. One chamber was held at ambient conditions 

(control), and the opposite was held at a predetermined CO2 concentration (treatment). A total of 

12 mixed breed dairy kids (11 males, 1 female) were enrolled in the study. Kids were 

individually trained for at least 5 consecutive days to travel from the control chamber to the 

treatment chamber under ambient conditions. Two milk bottles were present in the treatment 

chamber to provide a milk reward (32oz) for the kids. Kids were then tested at each of 3 gas 

levels: 10%, 20%, or 30%, while the control chamber was maintained <1% CO2. During testing, 

kids were placed in the control chamber for 5 minutes, after which the sliding door was opened 

to provide access to the treatment chamber. After entering the treatment chamber, kids were 

provided with 10-minutes access to the treatment chamber and were then removed and returned 

to the home pen. Kids were randomly assigned 10% or 20% as the first treatment and were 

systematically tested, with all kids receiving 30% on the third treatment day. Kids received a 2-

day washout period (ambient CO2) between each gas treatment. 10 kids tolerated 10% CO2 for 

10 minutes. One kid exited the treatment chamber at 8.5 minutes after consuming his full ration, 

and 1 kid lost posture at 289s. At 20% and 30%, all kids became ataxic and posture loss ranged 
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from 83s to 271s. One kid exited the treatment chamber before losing posture at 20%, and then 

re-entered the chamber and became recumbent. All kids continued to consume milk prior to and 

during ataxia, and re-entered the treatment chamber on wash out days. Kids did not show any 

avoidance behavior to any CO2 concentration, and did not appear to develop a conditioned 

aversion to the treatment chamber. The results of this study support CO2 as a method for kid 

euthanasia and justify further research on the concept. 

Keywords: carbon dioxide, euthanasia, goat, kid 
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3.2 INTRODUCTION 

The euthanasia of an animal may happen on farm for a multitude of reasons including 

disease affliction, lameness, failure to conceive and other productivity issues. In 2006, 68% of 

Wisconsin dairy farmers stated that there had been at least one case of on-farm euthanasia within 

the past 3 years (Hoe and Ruegg, 2006). Due to the common occurrence of on-farm euthanasia 

and the need to provide euthanasia to ill and injured animals in a timely manner, many producers 

and caretakers must perform the procedure themselves due to unavailable or inaccessible 

veterinary care. This emphasizes the importance of producers working closely with veterinarians 

to determine both the necessary critical endpoints for animals as well as proper application of a 

euthanasia method (Turner and Doonan, 2010).  

Carbon dioxide (CO2) is an inhalant euthanasia agent that is regularly used for swine 

euthanasia, and during stunning of swine and poultry in processing facilities (OIE, 2014). Carbon 

dioxide is an inexpensive and effective method of euthanasia for small mammals when coupled 

with proper training and adequate equipment (Leary et al., 2013). Within the swine industry, CO2 

is perceived by many as more peaceful than the common method, blunt force trauma, used for 

pigs weighing less than 6 kg. Additionally, many caretakers agreed that holding the pig while 

performing euthanasia was an unpleasant experience (Matthis, 2005). Subsequently, CO2 may be 

a preferred method for some animal caretakers who agree that a gentle, albeit longer, death is 

preferred to a quick, more distressing death (Matthis, 2005, Hawkins et al., 2006).  

Carbon dioxide causes death by inducing hypercapnia and hypoxia. During 

hypercapnia, the pH of the blood in the lungs is too acidic to effectively bind oxygen, and 
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subsequently insufficient levels of oxygen are delivered to the tissues. This leads to tissue 

hypoxia, erratic cardiac activity, and reduced myocardial function which results in decreased 

heart rate, hypotension, vascular collapse and eventually death (Hall and McShane, 2013).  

The time to loss of consciousness during CO2 exposure varies greatly depending on the 

concentration used. In atmospheres of 100% CO2 rats became insensible within 25 seconds 

(Reed et al., 2009). Similarly, in 80-90% CO2, finishing pigs (40 ± 6 kg) lost somatosensory 

potentials within 17 to 25 seconds (Raj et al., 1997). Broiler chickens lost posture within 172 

seconds in a 15.7% atmosphere and weaned pigs lost posture at 143 seconds during a 20% 

CO2/minute box volume replacement rate (Gerritzen et al., 2004, Sadler et al., 2014a). While this 

induction time is relatively fast, there is still the potential for distress and pain during the 

animals’ conscious period. In humans, air hunger begins at 8%, while 50% to 100% CO2 levels 

have been described as 'unpleasant' to 'painful' (Van den Hout and Griez, 1984, Danneman et al., 

1997, Liotti et al., 2001). Additionally, elevated levels of substance P were observed in neonatal 

pigs exposed to 100% CO2 which suggests that exposure to this concentration of CO2 is a painful 

and stressing experience (Sutherland et al., 2012). Inhaling elevated levels of CO2 has the 

potential to cause acute pain by directly activating nociceptors located within the respiratory 

tract. For example, in the nasal trigeminal system of the domestic hen, there are at least 40 

nociceptors sensitive to ammonia, and 5 of these were also activated by CO2 (McKeegan, 2004). 

Furthermore, vagal bronchopulmonary C-fibers located within the lungs show sensitivity to CO2, 

are able to elicit pain signals in response to both endogenous and exogenous stimuli, and show 

mild stimulation by the inhalation of 5 to 8 breaths at 30% CO2 (Lin et al., 2005, Kollarik et al., 

2010).   
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Although CO2 has the potential to cause distress and pain, these factors may be 

attenuated by its ability to generate analgesia and anesthesia during induction of 

unconsciousness. Exposure to CO2 depresses the reactivity of both respiratory and non-

respiratory neurons (Lipski, 1986). During hypercapnia, stress-induced opioids are released 

(Gamble and Milne, 1990, Grönroos and Pertovaara, 1994, Fukuda et al., 2006), and these 

opioids are linked with the depression of ventilatory response, a lessened “need to breath” and 

other sedative effects that induce anesthesia and analgesia (Pattinson et al., 2007, Zhang et al., 

2007, Kimura and Haji, 2014). Severely hypercapnic (pH ~6.7) rat spinal cords were shown to 

exhibit the same amount of nociception as spinal cords treated with the analgesic 

dexmedetomidine and guinea pigs exhibited deep anesthesia for 50 seconds after being exposed 

to 80% CO2 for 30 seconds (Kohler et al., 1999, Otsuguro et al., 2007). Mildly hypercapnic rats 

(PaCO2: 40 ± 8 to 90 ± 9mmHg) exhibited reduced withdrawal and pain responses (Gamble and 

Milne, 1990, Fukuda et al., 2006). Elevated levels of extracellular adenosine are also observed in 

hypercapnic cerebral fluid, and act as an agonist for the G-protein coupled receptor A1 which 

produces a significant inhibitory effect on neuronal transmission (Dunwiddie and Masino, 2001, 

Eisenach et al., 2004, Dulla et al., 2005, Otsuguro et al., 2007).  

Some caretakers perceive CO2 as a relatively hands-off method that is peaceful and 

safe, and there is merit in evaluating it as a euthanasia method for ruminants (Matthis, 2005). In 

order to be considered suitable for euthanasia, the method in question must not induce 

unnecessary or unavoidable pain or distress (Leary et al., 2013 p 10, OIE, 2014). Some of the 

most useful tools to evaluate the novel use of an inhalant euthanasia method are the conditioned 

place aversion and approach-avoidance paradigms (Dawkins, 1990). These tests directly ask the 

animal the question of whether they are willing to enter an environment filled with this inhalant, 
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and whether experiencing the inhalant was a strongly aversive event. The ultimate goal of this 

study was to determine if the presence of CO2 within a previously conditioned environment was 

sufficiently irritating for neonatal kids to forgo a salient food reward, and if so, the concentration 

of CO2 at which this occurs. A second objective was to determine whether experiencing CO2 

produced a conditioned place aversion by the neonatal kid.  

3.3 MATERIALS AND METHODS 

The protocol for this experiment was approved by the Iowa State University (ISU) 

Institutional Animal Care and Use Committee  

3.3.1 Experimental design. 

A conditioned place preference model was utilized to condition the kids to the test box, 

after which an approach-avoidance paradigm was used to assess the level of aversion kids 

developed to CO2. This experiment was a repeated measures design with each test subject acting 

as its own control and each kid tested individually. Testing occurred between 1:00pm and 

5:30pm after a period of feed deprivation of 5 to 9.5 hours. Kids were randomly assigned a time 

point for testing, and were consistently tested at that time point daily. The experiment was split 

into 2 phases: training and testing. During training, kids were tested for a minimum of 5 

consecutive days with ambient air conditions in both control and treatment chambers (< 0.04% 

CO2). Testing consisted of 3 gas treatment days, and 2 or 3 ambient washout days after each gas 

day. During gas treatments, the control chamber was maintained < 1% CO2 while the treatment 

chamber was prefilled to a specified concentration. Gas treatments consisted of 1 gas type (CO2 

100%) and 3 concentrations (10%, 20% & 30%). Kids received all concentration treatments. 

Kids were randomly assigned either 10% or 20% CO2 as the first gas concentration treatment, 
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and then systematically received the next treatment of either 10% or 20%. All kids received 30% 

CO2 as the final treatment. 

3.3.2 Experimental equipment. 

A preference testing box (Figure 3.1) was custom designed with two connecting 

chambers separated by a sliding door. A gas sink approximately 5cm wide was located within the 

doorway to maintain the separate concentrations. A plastic curtain made of transparent PVC 

strips was also fitted to the doorway to aid in maintaining separate atmospheres. One chamber 

was held at ambient conditions (control chamber) and the opposite chamber was held at a 

designated CO2 concentration (treatment chamber). Fans were installed in the walls of both 

chambers to promote air flow. A continuous flow of ambient air was introduced in to the control 

chamber via air inlets attached to the bottom structure of the box. Carbon dioxide was introduced 

in to the treatment chamber via similar air inlets attached to the bottom structure of the treatment 

side. The left air inlet at the bottom of the treatment chamber was equipped with a gas inlet to 

facilitate CO2 delivery. The inside dimensions of each chamber measured 61 cm width x 61 cm 

height x 61 cm length. The side panels of the box were made of opaque, hard plastic. In the 

control chamber, plastic gloves were fitted on each side panel to facilitate handling of the animal 

when required during the test. These gloves were retracted from the box when not in use. To 

enable viewing, clear plastic was used for the doors which were located on the lateral ends and 

the top of the box. The floor was covered with rubber floor mats in both chambers to provide 

traction. To attract kids to the treatment chamber, two milk bottle holders were installed and 

contained 472mL milk bottles that were identical to those used during daily feeding. 

Carbon dioxide was administered using a compressed cylinder of CO2 (99% pure) 

purchased from ISU Chemistry Stores (Ames, IA, 50010). The gas was delivered to the 
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treatment chamber through a 9.5 mm hose. CO2 gas levels were controlled using a gas regulator 

(Euthanex Corp., Palmer, PA) to maintain static gas concentrations throughout each treatment. 

Gas flow rate was 12 L/min at 10%, 30 L/min at 20%, and 55 L/min at 30%. Exhaust was 

funneled from the gas sink into the test room ventilation system.  

3.3.3 Animal husbandry and enrollment. 

A total of 12 mixed neonatal dairy goat kids (1 female, 11 males) were enrolled in this 

study, sourced from two commercial herds in the Midwest USA. Kids were of various breeds 

including Alpine-Saneen cross, LaMancha, and Nubian. Kids were collected and enrolled from 

May to October of 2014. Kids were removed from the dam after birth and bottle-fed prior to 

enrollment. Kids were acquired between 1-7 days of age to ensure adequate consumption of 

colostrum, and the mean body weight upon arrival was 3.7 ± 0.2 kg. None of the male kids were 

castrated and no kids were disbudded. All kids were ear tagged for identification prior to arrival 

at ISU. 

Kids were housed in 3 climate-controlled rooms at ISU Laboratory Animal Research 

(LAR) buildings, with a 12-hour light cycle from 6:00am to 6:00pm. Kids were housed in a 9.3 

m2 room that was divided equally into 5 pens to facilitate individual feeding. Pens were 

separated using spindle barriers with 5 cm separation between bars that allowed nose-to-nose 

contact for social interaction. Each pen contained one heat lamp, one plastic tub for climbing, 

and straw bedding for comfort. 

Body temperatures were recorded daily using a hand held thermometer (Mabis 

Healthcare Inc. Waukegan, IL) and body weights were recorded weekly using a handheld scale 

that was accurate to 0.01kg (Pure Fishing, Inc Columbia, SC). All kids received daily milk 
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rations equal to 18% of their body weight in grams. Advance milk replacer (Milk Specialties 

Global Eden Prairie, MN) was fed using standard 472mL graduated lamb milk bottles equipped 

with Pritchard teats (Pritchard teats, Riverton, New Zealand). Kids were fed approximately every 

4 hours during acclimation and then 3 times over a 24-hour period after enrollment.  

Upon arrival at LAR, all kids received at least 3 days of acclimation, during which no 

experimental procedures were performed. Kids were observed for any health issues; the 

acclimation period was extended for kids that exhibited clinical signs of illness until these signs 

were no longer present. In addition, kids were required to reach a behavioral start criterion based 

on suckling motivation before enrollment in testing. Kids were considered successful in meeting 

this criterion if they actively found and sucked on the nipple within two minutes of the bottle 

being placed in the bottle holder during 4 consecutive feedings in the home pen. 

3.3.4 Testing procedure. 

During training, each kid was carried individually from the home pen to the testing 

room, and placed in to the control chamber. Kids were provided with 5 minutes to acclimate to 

the box, after which the sliding door was opened providing access to the treatment chamber. 

Kids were given 5 minutes to voluntarily pass through the doorway, after which they were gently 

assisted through the doorway using the attached rubber gloves. Once in the treatment chamber, 

kids were given 10 minutes access to the entire testing box, during which they could move freely 

between treatment and control chambers. After testing concluded, kids were removed from the 

box and carried back to the home pen. In order to advance to testing, kids had to be trained for a 

minimum of 5 days and meet a criterion of entering the treatment chamber unassisted on 2 

consecutive days immediately prior to testing. This criterion ensured that kids were exhibiting 
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strong motivation to enter the treatment chamber. Training days continued until this criterion was 

met.  

During testing, washout days followed the same protocol as training days. On gas days, 

kids that did not enter the treatment chamber voluntarily were not assisted through the doorway; 

they were removed from the box and returned to the home pen. Kids that entered the treatment 

chamber on gas days were removed after either loss of posture or the 10-minute time limit.  

An indoor temperature monitor (AcuRite Lake Geneva, WI) was placed within the 

control chamber to record the relative humidity (%) and temperature (C°) of the test box prior to 

each test. This environmental data was recorded by the observer for each individual kid 

immediately prior to entry. The monitor was removed as each kid was placed in to the box, and 

replaced after each test period concluded. Between tests the box was cleaned with a disinfectant 

(Accel, Virox Technologies Inc., Ontario, Canada). 

3.3.5 Modification to study design. 

Seven of the 12 kids were tested with a plastic PVC curtain that was designed as 10 

small (2.5 cm) strips that were 58.4 cm long, and provided little resistance. During testing, 

several kids would linger in the doorway causing the curtain to remain open, impairing 

maintenance of a static < 1% CO2 concentration in the control chamber when maintaining 30% 

concentration of CO2 inside the treatment chamber. Subsequently, CO2 levels during the 30% test 

ranged from 14% to 24.7% for 3 kids. A new curtain was designed for testing the last 5 kids. The 

material used was identical to the material used for the first curtain. The curtain consisted of 2 

larger (12.7 cm) strips that were 58.4 cm long, and provided more resistance than the first 

curtain. One of the 5 kids required 1 additional training day with the new curtain in order to 
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reach the criteria to advance to testing. Carbon dioxide concentrations ranged from 28% to 

31.5% with the new curtain without sacrificing control conditions.  

3.3.6 Behavioral observations. 

Data was collected via live observation and video recording. Live observation was 

gathered by two observers. One observer (observer 1) was positioned on the right side of the box 

out of the test subject’s view. The second observer (observer 2) was positioned in front of the 

treatment chamber so that the kid was visible to facilitate the recording of direct behavior 

observations. A black fabric curtain (2.1 m length x 0.9 m wide) and lighting placement was 

used to ensure that observer 2 was obstructed from the kid’s view. 

3.3.7 Live observations. 

Behaviors that were recorded via live observation were selected due to the difficulties 

associated with reliably discerning these behaviors on video (Table 3.1). The latency to enter the 

treatment chamber was measured using a timer (National Presto IND. Inc., Eau Claire, WI) after 

the sliding door opened until both ears of the kid crossed the doorway from the control to the 

treatment chamber. When assistance was needed, latency to enter was recorded as 5 minutes. 

Vocalizations were collected as a counted event and separated in to 3 categories: control, 

transition, and treatment. The amount of milk consumed from each bottle was recorded after 

each test.  

3.3.8 Video observations. 

Video data was collected using a Noldus Portable Lab (Noldus Information 

Technology, Wageningen, NL). Four color Panasonic cameras (WV-CP484, Kadoma, Japan) 

were positioned to provide views from top and lateral doors of control and treatment chambers 
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(Figure 3.2). The recordings from these cameras were captured onto a PC using HandiAvi (v4.3, 

Anderson's Azcendant Software, Tempe, AZ)  at 30 frames/s. Prior to each test, identifying 

information was presented on a dry erase board to the camera to identify the date, animal ID, test 

day, and trial number.  

Behavior data was collected from videos by one trained observer who was blinded to 

the animal ID, date and test day. Behavioral data was recorded using Observer (v10.1.548, 

Noldus Information Technology, Wageningen, NL). A neutral individual performed the blinding 

procedures for the video recordings from all tests. The blinding procedures involved cutting the 

video recordings to remove identification presented at the beginning of each video, assigning a 

random number to each video segment and sorting for the purpose of providing a random 

sequence in which videos were to be scored. Four videos were selected at random and duplicated 

within this sequence for the purpose of determining intra-observer reliability. 

Prior to data collection, the observer was trained to use the Observer program by 

repeatedly scoring 2 videos and ethogram from an unrelated study until reaching a reliability 

score of k ≥ 0.90 as calculated by the Observer program. After reaching this level of competence, 

data collection began using the current videos and ethogram (Table 3.2). Intra-observer 

reliability averaged k = 0.91. 

3.3.9 Statistical analysis. 

Means and standard errors were calculated using raw data in Excel (version 2013, 

Redmond, WA). A linear mixed effect model was utilized for discrete data such as vocalizations, 

head shakes, startle, rear, and escape attempt, as well as continuous data such as bottle engage, 

ataxia, and open mouth breathing. A survival analysis regression was used to analyze all latency 
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data. Elimination was categorized as binary data and was analyzed using a logistic regression 

model. Data was categorized in to 3 subsets: the day immediately prior to gas testing (baseline), 

gas testing, the day immediately after gas testing (washout). Means were then compared within 

and across subsets to observe changes in behavior. Each kid was an experimental unit. Gas 

concentration, day number and startle score were analyzed as fixed effects while the individual 

goat identification was a random effect.   

3.4 RESULTS 

All kids (n=12) completed the criteria of voluntarily entering the treatment chamber for 

2 consecutive days immediately prior to gas testing. No kids became ill or seriously injured 

during testing. All kids entered the treatment chamber voluntarily during all gas treatments, and 

all kids lost posture within the treatment chamber at least once. Four kids were excluded from 

the 30% data set due to insufficient concentrations of CO2 during testing.  

3.4.1 Avoidance and aversion. 

All means (±SE) of latencies to enter the treatment chamber, first bottle touch, and 

suckle for all test days are presented in Table 3.3. The mean latency to enter on all baseline days 

was 2.1 ± 0.3 seconds (range 1 to 5 seconds). The mean latency to enter was 2.4 ± 0.8 seconds 

(range 1 to 10 seconds) at 10%, 2.7 ± 0.8 seconds (range 1 to 11 seconds) at 20%, and 1.6 ± 0.5 

seconds (range 1 to 5 seconds) at 30%. Mean latency to enter was 2.52 ± 0.8 seconds (range 1 to 

15 seconds) for all washout days. The mean latency to enter was slightly longer on Gas day 2 

(G2) compared to Gas day 1 (G1) at 10%, but this was not observed in either 20% or 30% 

treatment. One kid had a latency to enter of 2 seconds on G1 at 20%, and then 10 seconds on G2 

at 10%. Another kid had a latency to enter of 11s on G1 at 20%. During washout, there were two 
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outliers (12 seconds and 15 seconds). Excluding these outliers, the range for latency to enter was 

1 to 4 seconds for both 10% and 20% CO2 and 1 to 4 seconds for washout days. When the 

outlying kids are excluded, the latency to enter is similar across all days and treatments. 

 Latency to first bottle touch ranged from 1 to 3 seconds on all days. The mean latency 

to suckle was 3.9 ± 0.4 seconds (range 1 to 7 seconds) on baseline days, 4.3 ± 1 seconds (range 1 

to 13 seconds) at 10%, 3.9 ± 0.6 seconds (range 1 to 9 seconds) at 20%, 4.3 ± 0.5 seconds at 30% 

(range 2 to 8 seconds), and 4.7 ± 1.1 seconds (range 1 to 19 seconds) during washout days. One 

kid had a latency to suckle of 4 seconds on G1 at 20%, and 13 seconds on G2 at 10%. One kid 

had a latency to suckle of 18 seconds on Washout day 1 (W1), and different kid 19 seconds on 

Washout day 3 (W3). Excluding these outliers, the range for latency to suckle for 10% and 

washout is 1 to 9 seconds and 1 to 6 seconds, respectively. The shortest mean latency to suckle 

was on G2 at 20%, there were no other discernable differences between treatments or days.  

3.4.2 Gas responses. 

Latency and duration to ataxia and time to loss of posture outcomes for each 

concentration is depicted in Table 3.4. Only 2 kids displayed ataxia during 10%, while all kids 

became ataxic in 20% and 30% CO2, with the exception of 1 kid that did not display ataxia but 

lost posture in 30%. The mean latency to ataxia for 10% was 381.4 ± 139.2 seconds, 105.6 ± 

16.3 seconds for 20%, and 80.4 ± 11.3 seconds for 30%. The average duration of ataxia for kids 

in 10% CO2 was 50.2 ± 31.5 seconds, 26.1 ± 4.9 seconds in 20%, and 13.8 ± 9.3 seconds in 30%. 

One kid lost posture in 10% CO2 at 289 seconds. All kids lost posture in 20% and 30% 

concentrations. The mean latency to loss of posture was 191.4 ± 18.8 seconds and 117.3 ± 10.2 

seconds for 20% and 30%, respectively. One kid exited the treatment chamber during both 10% 

and 20%. The kid exited 10% with 90 seconds left in the test and did not return to the treatment 
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chamber. After exiting the treatment chamber at 20%, the kid re-entered the treatment chamber 

and remained until loss of posture. Righting response occurred in 10 /12 kids during 20% (mean 

2.3 ± 0.9) and 6/8 kids during 30% (mean 1.3 ± 0.4). The kid that lost posture at 10% required 1 

second to recover, while the mean latency to recovery was 26.3 ± 4.5 seconds for 20%, and 25.8 

± 3.7 seconds for 30%. 

During 10%, the majority of kids (9/12) exhibited head shaking in the control chamber 

(range 0 to 25 head shakes), while only 4 kids exhibited head shaking (range 0 to 4 head shakes) 

in the treatment chamber. Only 4 kids exhibited control chamber head shaking during 20%, and 

even fewer kids (2/12) exhibited head shaking in the treatment chamber. Head shakes ranged 

from 0 to 3 for 20%. During 30%, no kids exhibited control chamber head shaking, while 2 kids 

displayed 1 head shake each in the treatment chamber. 

Pauses in nursing behavior were a common occurrence for all goats, on all days. The 

average rate of nurse pause behavior was 1.3 ± 0.2 on baseline and washout days, and 0.5 ± 0.2 

for all gas days, with rates for 20% and 30% being the lowest. During 10% CO2 treatment, kids 

spent an average of 328.5 ± 33.4 seconds engaging with the bottle. Out of this time, kids 

exhibited open mouth breathing (OMB) for 121.6 ± 34 seconds. At 20% CO2, kids spent an 

average of 96.9 ± 13 seconds engaging with the bottle, and experienced OMB for 22.1 ± 6.4 

seconds. At 30% CO2, 66.4 ± 8.8 seconds were spent engaging with the bottle, with OMB 

occurring simultaneously for 19.6 ± 9.6 seconds.  

3.4.3 Fear-related behaviors. 

The mean numbers for control, transition, and treatment vocalizations for all test days 

are presented in Table 3.5. Mean control vocalizations were 98.3 ± 17.8 on baseline days (range 
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19 to 191 vocalizations), 87.2 ± 14.2 at 10% (range 36 to 162 vocalizations), 83.9 ± 17 at 20%, 

84.4 ± 19.6 at 30% (range 15 to 177 vocalizations), and 98.3 ± 18.5 (range 29 to 182 

vocalizations) on washout days. There was no perceivable difference between control 

vocalizations across treatments or days. Transition vocalizations ranged from 0 to 3 across all 

days and treatments, with only 9 instances of vocalization occurring over all days. Two kids 

vocalized during the transition period at 20%, 1 kid at 10%, and no kids vocalized during the 

transition period at 30%. 

Mean treatment vocalizations were 2.2 ± 3 (range 0 to 45 vocalizations) on baseline 

days, 2.8 ± 1.5 (range 0 to 14 vocalizations) at 10%, 9.1 ± 2.3 at 20% (range 0 to 24 

vocalizations), 5.9 ± 3.1 (range 0 to 25 vocalizations) at 30%, and 2.3 ± 3.1 (range 0 to 43 

vocalizations) on washout days. The majority of kids (10/12) did not vocalize during baseline 

days, and one of these kids also vocalized during washout days while all other kids did not 

vocalize. The majority of kids (8/12) did not vocalize during 10%, while only 2 kids did not 

vocalize during 20%. Almost half of the kids (3/8) did not vocalize at 30%.  

The average numbers for all rears and startles for all test days are presented in Table 

3.6. Rears occurring in the control chamber (control rears) were exhibited by 8 of 12 kids during 

10% and ranged from 0 to 38 rears, while rears occurring in the treatment chamber (treatment 

rears) were exhibited by 3 kids and ranged from 0 to 3 rears at that concentration. Seven of 12 

kids exhibited control rears (range 0 to 17 rears), and 1 kid reared once while in the treatment 

chamber during 20%. The majority of kids (7/8) exhibited control rears (range 1 to 15 rears) 

during 30%, while no treatment rears occurred. This is similar to the amount of rears occurring 

on baseline and washout days, with only 7 occurrences of treatment rears over all baseline days 

(range 0 to 5 rears) and 8 bouts of treatment rears over all washout days (range 0 to 11 rears).  
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The majority of kids (10/12) displayed elimination behavior at 10%, while only 4 kids 

and 3 kids showed elimination during 20% and 30%, respectively. Elimination behavior was 

common during baseline, but decreased over time as illustrated by 8 of 12 kids displaying 

elimination behavior on B1 while only 2 of 8 kids showed elimination behavior on B3. Similarly, 

7 of 12 kids eliminated during W1, while only 1 of 8 kids eliminated during W3. No escape 

attempts were observed during any gas treatment, although 1 kid made a single escape attempt 

on B1 and W1.  

3.4.4 Fearfulness and aversion. 

Startle score for each kid was determined by the cumulative number of startle events of 

an individual kid over all test days. The median startle score for all kids was 5 (range 0 to 14). 

Five kids had a startle score below the median (low startle), and 5 kids had a startle score above 

the median (high startle). The mean latency to enter for each treatment in terms of startle score is 

depicted in Figure 3.3. The mean latency to enter on baseline days for low startle kids was 1.2 ± 

0.5 seconds, and the mean latency to enter was 1.4 ± 0.4 seconds for 10%, 1.4 ± 0.2 seconds for 

20%, 1 ± 0 seconds for 30%, and 1.4 ± 0.3 seconds on washout days. For high startle kids, the 

mean latency to enter was 2.5 ± 0.5 seconds on baseline days, 4 ± 1.6 seconds for 10%, 4.2 ± 1.8 

seconds for 20%, 2.3 ± 0.9 seconds for 30%, and 3.1 ± 1.2 seconds for washout days.  

Mean treatment vocalizations for each treatment in terms of startle score is depicted in 

Figure 3.4. Low startle kids did not vocalize in the treatment chamber during baseline days, and 

mean treatment vocalizations were 0.6 ± 0.6 for 10%, 10.8 ± 3.3 for 20% and 9.5 ± 5.7 for 30%. 

Kids did not vocalize on washout days. Mean treatment vocalizations for high startle kids were 

4.5 ± 5.5 on baseline days, 3.4 ± 2.7 for 10%, 6.2 ± 2.5 for 20%, 2.3 ± 1.7 for 30%, and 4.8 ± 5.8 

on washout days. The kid that exhibited escape attempts had a startle score of 5. Low startle kids 
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did not rear during any gas treatment. Three high startle kids reared in the treatment chamber 

during 10% (range 1 to 3 rears), 1 high startle kid reared once in the treatment chamber during 

20%, and no high startle kids reared in the treatment chamber during 30%.  

The mean latency to loss of posture for each treatment in terms of startle score is 

depicted in Figure 3.5. The mean latency to loss of posture for low startle kids was 239.4 ± 15.4s 

for 20% and 135.5 ± 14.5.1s for 30%. The mean latency to loss of posture for high startle kids 

was 133 ± 22.3s for 20% and 98.5 ± 6.6s for 30%.  

3.5 DISCUSSION 

Data collected by direct observation was done so to ensure that small movements or 

angle-dependent behaviors that would not be visible on video were recorded accurately. Data 

collected by video observation included behaviors that occurred in fast succession, prolonged 

duration, or were not visible to either observer. Live and video data were successfully recorded 

for all kids on all test days. The observer charged with collecting all vocalizations and latency to 

enter data was a rotation of various trained lab members and employees, and the data was 

consistent between observers. Upon arrival at LAR, all kids exhibited clinical signs of illness 

including lethargy and diarrhea. All kids required tube feeding at least once and experienced 

moderate to severe diarrhea. Four kids received saline solution, administered either intravenously 

or subcutaneously, due to severe dehydration. Five kids showed signs of severe diarrhea and 

received treatment with Naxcel until symptoms improved; 4 kids required 3 days of treatment 

and 1 kid required 5. One kid received treatment with Banamine upon arrival for a temperature 

above 104°. Training occurred simultaneously with Naxcel treatment, but not testing. Due to the 

response uniformity across all 12 kids, it does not appear that treatment had an effect on 
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behavior. It is unlikely that the illness of the kids during training had any effect on responses 

during testing (Sadler et al., 2014c). 

Overall, the results from this study suggest that kids did not form a conditioned place 

aversion after exposure to CO2, and there did not appear to be an innate avoidance response to 

any of the CO2 concentrations. All kids voluntarily entered the treatment chamber on all days. 

The majority (10/12) of kids entered the treatment chamber within ≤5 seconds, and the mean 

latency to enter the treatment chamber was within 3 seconds difference between all baseline and 

gas days. Contrary to expectations, the lack of a distinguishable difference of latency to enter 

between baseline days and any gas treatment indicates that the presence of CO2 did not elicit a 

high enough fear response in kids to affect a previously conditioned behavior. Furthermore, there 

is no evidence that kids developed a conditioned aversion to the treatment chamber after 

exposure to any level of CO2. The majority (10/12) of kids entered the treatment chamber <5 

seconds on all washout days, and the mean latency to enter the treatment chamber was within 3 

seconds difference between all days, suggesting that the physiological effects of CO2 exposure 

were not salient enough to condition fear of the treatment chamber for most kids. Similarly, 

behaviors stayed consistent across baseline days, which provides more evidence regarding the 

lack of a lasting carryover effect. The mean latencies to bottle touch and suckle were similar 

between all days, further supporting that CO2 presence at any concentration did not disrupt 

appetitive or consummatory behavior in kids. These results are inconsistent with the results of 

other studies, where mice and rats are willing to forgo a reward in order to escape CO2 

concentrations above 15% (Niel and Weary, 2007, Makowska et al., 2009). However, pigs have 

shown similar responses, and were willing to enter a chamber containing 30% CO2 to retrieve a 

food reward (Raj and Gregory, 1995). 
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3.5.1 Avoidance and aversion. 

The response to CO2 appeared to be relatively uniform among all kids, and all 

concentrations of CO2 appeared to be similarly tolerated. Three kids exhibited behaviors that 

could be interpreted as avoidance or aversion behavior. One kid required 11 seconds to enter the 

treatment chamber at 20% during G1, and required 12 seconds to enter the treatment chamber on 

the following washout day, suggesting that the kid may have recognized the noxious 

environment and recalled the negative experience on the following test day. However, if this had 

been a direct product of exposure to 20%, the same response would have likely been observed at 

30% as well. Instead, this behavior was not replicated on any of the following gas treatments or 

washout days suggesting that these prolonged entry times were due to chance. Another kid 

required 10 seconds to enter 10% CO2 on G2. This would suggest that the kid was able to 

differentiate between ambient and gas days, and was able to associate the negative effects that 

occurred at 20% on G1 with the presence of 10% on G2. Once again however, this behavior was 

not observed at 30% indicating that this response was likely not associated with self-

preservation. Lastly, a kid required 15 seconds to enter the treatment chamber on W1 after 

exposure to 10% on G1, however this behavior was not repeated on any other day. Although 

similar results have shown that pigs will delay entry in to CO2 atmospheres, rats exhibit 

decreased tolerance to an anesthetic gas from repeated exposure, and dairy calves are reluctant to 

approach an aversive stimulus, the inconsistent performance of these behaviors in the current 

study, an interpretation of these behaviors being associated with CO2 is not supported (Pajor et 

al., 2003, Dalmau et al., 2010, Wong et al., 2013, Bertolus et al., 2015).   

A fourth kid exited the treatment chamber on both G1 and G2, suggesting that 10% and 

20% CO2 may have been aversive. However, this behavior was also exhibited on the ambient 
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days Baseline 1 (B1), Baseline 2 (B2), Baseline 3 (B3), W1 and Washout day 2 (W2). 

Additionally, after exiting the treatment chamber at 20%, the kid re-entered the treatment 

chamber in this same test and remained in the chamber until recumbency. This behavior has also 

been previously observed in pigs, although the response is not uniform across the species (Raj 

and Gregory, 1995). When this behavior was exhibited on days when ataxia was not present, it is 

possible that the kid was satiated and exploratory behavior became more appealing than food, a 

behavior that has also been seen in rats (Ferreira et al., 2006). 

The results from this study supported the hypothesis that kids would tolerate 10% CO2 

without displaying avoidance or fear behaviors, supporting the current evidence that 10% CO2 is 

generally well tolerated, a trait also observed in broilers and rats (McKeegan et al., 2006, Niel 

and Weary, 2007, Niel et al., 2008, Burkholder et al., 2010). It has been well documented that 

rats and mice will leave CO2 atmospheres before they are unable to do so, and this knowledge 

was used as the basis for the expectation that at 20% CO2, kids would enter the treatment 

chamber but leave before losing posture (Kirkden et al., 2005, Niel and Weary, 2007, Niel et al., 

2008, Makowska et al., 2009). However, none of the kids fulfilled the expectation of exiting the 

treatment chamber (or remaining on the control side after exiting in the case of 1 kid) before 

recumbency occurred. The hypothesis that kids would refrain from entering the treatment 

chamber on Gas day 3 (G3) was based on data that describes 30% CO2 as capable of inducing 

feelings of panic and acute pain in humans (Van den Hout and Griez, 1984, Lin et al., 2005). 

This expectation was incorrect, and all kids entered the treatment chamber in ≤5 seconds. These 

results are similar to behavior observed in pigs exposed to 30% CO2. Finishing pigs were willing 

to enter the chamber for a reward, although the majority of pigs will withdraw their head before 

loss of posture occurs and will not re-enter (Raj and Gregory, 1995). The difference of findings 
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in the current study compared to data in other species may be due to the ontogeny of the goat; a 

creature that is well adapted to live in high altitudes. It is likely that goats are more adept at 

handling hypercapnia and subsequently less perceptive of elevated CO2 concentrations (Noyd et 

al., 2013).  

The majority of pigs will exit a 30% CO2 environment before losing posture, and 

similar outcomes have also been observed in mice and rats at even lower levels (Raj and 

Gregory, 1995, Makowska et al., 2009, Wong et al., 2013, Moody and Weary, 2014). Unlike 

these species however, all kids lost posture at 20% and 30% CO2. This may be associated with 

the lack of avoidance or aversion behavior observed throughout the trial; kids did not find 

exposure to CO2 to be a strongly aversive experience. This may also have been due to an 

inability of the kids to recognize the doorway as the escape route from the treatment chamber. 

Although two kids demonstrated the ability to pass from the treatment chamber back to the 

control chamber, it is possible that the other kids did not learn this task. However, both of these 

kids displayed the ability to pass freely between chambers before the last gas day and both kids 

became recumbent on G3, suggesting that there was little no to effort by these kids to escape 

before recumbency. 

There are two factors that may have had an effect on kids’ responses to CO2. It is 

possible that kids were affected by the relatively fast-acting, depressant effects of CO2 on the 

nervous system (Gamble and Milne, 1990, Kohler et al., 1999, Fukuda et al., 2006). Due to the 

rapid onset of incoordination and CNS depression, kids may have not had enough cognitive 

function to exit the treatment chamber. It is also possible that the lack of response to CO2 was 

confounded by the extremely potent stimulus of the milk bottle, as food has been shown to 

decrease pain perception in human (Zmarzty et al., 1997). Furthermore, pain intensity can be 
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attenuated by attentional shifts and changes in focus (Gentle, 2001, Villemure et al., 2003). 

Subsequently, it is possible that in a less attractive environment, kids might have displayed a 

negative reaction to CO2.  

3.5.2 Gas responses. 

Kids remained engaged with the bottle during the initial physiologic effects of 

hypercapnia, evidenced by the kids exhibiting OMB while simultaneously engaging with the 

bottle. OMB has been classified as a powerful indicator of stress, due to its link to air hunger and 

breathlessness (Beausoleil and Mellor, 2015). The focus on the bottle is indicative of the high 

motivation of kids to suckle even during potential harm, a behavior that has been observed in 

mice who are willing to endure a shock to access food (Latagliata et al., 2010). 

Head shaking is a common reaction to the presence of CO2 at concentrations above 

10% in poultry (McKeegan et al., 2006), and generally a result of respiratory tract irritation from 

the formation of carbonic acid. Head shaking and nursing pause behavior was expected to 

increase during gas treatment due to respiratory irritation or disruption, however the occurrence 

of neither head shakes nor nursing pauses appeared to be associated with the presence of CO2. It 

is possible that these outcomes were confounded by external factors such as ear tags increasing 

the number of head shakes, and social isolation stress influencing kids to pause often during 

feeding in an attempt to locate conspecifics. The shortened latency to ataxia during 30% 

indicates that depressant effects occurred most quickly during this treatment, an effect that is also 

supported by the decreased duration of ataxia, and reduced latency to loss of posture. The 

occurrence of righting responses were similar between 20% and 30%, however this may be due 

to the removal of kids from the box soon after loss of posture. The similarity of latency to regain 
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posture across treatments indicate that the reversibility of unconsciousness is not affected by the 

concentration used. 

3.5.3 Fear behaviors. 

It is likely that pain was experienced by all kids during exposure to all CO2 

concentrations. This is supported by the increase in treatment vocalizations during gas treatment 

days compared to both baseline and washout days, which agrees with previous literature 

reporting vocalizations as an indicator of stress in kids (Price and Thos, 1980, Lyons et al., 1993, 

Siebert et al., 2011).An increase in vocalizations is also interpreted as a distress response to CO2 

in rats (Niel and Weary, 2006). All baseline vocalizations and washout vocalizations were 

similar, indicating that frequency of vocalization was an appropriate measure to assess the effects 

of CO2. Treatment vocalizations during 10% testing were similar to treatment vocalizations on 

baseline and washout days, further supporting the relatively benign nature of 10% CO2. 

Treatment vocalizations were highest during 20% CO2, and 30% vocalizations were close to 

midway between the numbers for 10% and 20%. Although 30% CO2 had fewer vocalizations 

than 20% CO2, the difference in vocalization frequency can likely be attributed to the shortened 

latency to ataxia and unconsciousness during 30%. 

Elimination, escape attempts and rearing behaviors did not appear to be associated with 

the presence of CO2. Elimination behavior in kids was low across all days, and did not increase 

or decrease consistently. Escape attempts are generally observed when an animal is in an 

environment that is perceived as threatening, and escape attempts are exhibited in pigs and 

rodents during gas exposure (Niel and Weary, 2006, Llonch et al., 2012, Chojnacki et al., 2014, 

Sadler et al., 2014b, Barnard et al., 2015). The lack of escape attempts during gas treatments may 

be an indicator of a lack of fear in response to CO2, but it may also be associated with the ataxia 
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that accompanies CO2 exposure. Although control rears were higher on G1 and W1 compared to 

B1 during 10% treatment, the numbers were inflated due to excessive rearing exhibited by 1 kid 

on both days. Control and treatment rears remained consistent across all other days, and rearing 

behavior decreased in the treatment chamber suggesting that the behavior is linked more closely 

with investigation and searching strategy than fear.  

3.5.4 Fearfulness and aversion. 

Fearfulness is a necessary characteristic for the survival of wild animals, and although 

it is reduced through domestication, it is still observed in most species. Startle behavior was 

observed in varying degrees, ranging from kids that displayed no startle response to unpredicted 

stimuli to kids that exhibited startle responses to predicted and unpredicted stimuli alike. As 

expected, high startle kids vocalized more than low startle kids on both baseline and washout 

day. However, high startle kids vocalized less during gas testing. This indicates several 

possibilities: fearful kids are not more sensitive to CO2 than non-fearful kids, fearful kids are not 

more sensitive to CO2 but they are more sensitive to social isolation than non-fearful kids, or 

startle score is not an appropriate measure of fear levels in kids. High startle kids did exhibit 

rearing behavior in the treatment chamber as opposed to low startle kids which may suggest an 

increased level of distress, however no rearing behavior in the previous study appeared to be 

associated with distress or fear (Chapter 2). Although high startle kids did take slightly longer to 

enter the treatment chamber during gas treatment, the difference was miniscule and does not 

provide robust data in support of the effect of fearfulness on response to CO2. 
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3.6 CONCLUSIONS 

The data from this study suggest that CO2 is a suitable euthanasia method for neonatal 

ruminants, and further research should be done to confirm the results found in this study. Kids 

did not show an unconditioned avoidance to any level of CO2 during the approach-avoidance 

paradigm, and did not show a conditioned place aversion to the treatment chamber after exposure 

to CO2. This interpretation is supported by previous research which demonstrates the ability of 

kids to form conditioned place preferences and recall experiences from repeated exposure to a 

stimulus to facilitate problem solving. The results of this study suggest that out of the 3 

concentrations utilized, 30% CO2 would be the most humane and efficient option. The rapid 

depressant effects of 30% CO2 minimized the amount of time that kids were able to clearly 

perceive pain or fear and also induced the shortest latency to loss of posture. The responses of 

fearful and non-fearful kids were similar across all treatments, indicating this method would be 

appropriate for all kids. These outcomes may be confounded by the milk bottle being too 

powerful of a stimulus, and attentional shifts affecting pain perception. It would be beneficial to 

investigate the concentration of CO2 at which kids are willing to forgo the bottle, in order to 

establish at what point, if any, CO2 is aversive to kids and also to confirm that kids are capable of 

avoiding a noxious gas environment. Recent research by our lab (unpublished) has shown that 

some kids will choose to forfeit the milk reward at 90% CO2. Additionally, it will be necessary 

to assess whether a less valuable stimulus, such as social interaction, would produce similar 

responses to CO2. These results would confirm whether the outcomes observed in the current 

study are due to pain attenuation from food consumption or attentional shifts, a circumstance that 

would likely not occur in practice. Overall, the current study presents favorable results for 
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implementing CO2 as a euthanasia method for kids, and provides a basis for further research in to 

the use of alternative euthanasia methods for neonatal ruminants.  
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CHAPTER 3 TABLES 

Table 3.2 Ethogram used for kid behavior collected during live observation during preference 

testing. 

Measure 

Behavior 

Category Variable type Description 

Latency to enter Learning 

 

Latency 

Both ears of the kid break the plane 

of the treatment chamber from the 

control chamber. 

Latency to first bottle 

touch Learning 

 

Latency 

The time from entry in to the 

treatment chamber to first 

deliberate touch of any part of the 

bottle using the nose, mouth or 

head 

Latency to suckle Learning 

 

 

Latency 

The time from entry in to the 

treatment chamber to active 

consumption of milk from the 

bottle 

Elimination Fear Binomial 

Any act of urination or defecation 

within the control or treatment 

chambers of the box (yes/no). 

Control vocalization Fear Count 

Vocalizations that occur in the 

control chamber of the box before 

the sliding door is opened. 

Transition vocalization Fear Count 

Vocalizations that occur in the 

control chamber of the box after the 

sliding door is opened, but before 

the kid enters the treatment 

chamber. 

Treatment vocalization Fear Count 

Vocalizations that occur in either 

chamber after the kid has entered 

the treatment chamber. 

Loss of Posture Fear Latency 

Lateral or sternal recumbency. 

Only occurs after ataxia on 

treatment side. Goat is not weight 

bearing on any limbs and no muscle 

tension in the neck is present. 

Regain Posture Fear Latency 

Goat is weight bearing on all four 

limbs in the recovery pen. 
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Table 3.2 Ethogram used for kid behavior collected during video observation of preference 

testing. 

Measure 

Behavior 

Category Variable type Description 

Rear Fear Count 

Weight-bearing on hind limbs 

only. 

Startle Fear Count Lateral jump or fast withdrawal. 

Startle Score Fear  

Cumulative number of startles 

over all days per kid. 

Escape Attempt Fear 

 

 

Count 

Coordinated jump towards the 

top of the box, all 4 hooves leave 

ground. 

Bottle Engage Normal 

 

 

Continuous 

Any interaction with the bottle 

including oral contact, nursing, 

and butting. 

Open Mouth Breathing 

Gas 

Response Continuous 

Mouth is visibly open and 

labored breathing is apparent by 

exaggerated flank movements. 

Goat is weight bearing on at 

least 2 limbs. 

Righting Response 

Gas 

Response Count 

Only occurs after loss of posture. 

Goats may be sternal or lateral. 

Coordinated movements are 

made to return to standing or 

sternal (respectively). Includes 

lifting head during lateral 

recumbency. 

Ataxia 

Gas 

Response 

Continuous/ 

Latency 

Minor to severely uncoordinated 

limb movements while the kid is 

still weight bearing on at least 2 

limbs. 

Head Shake 

Gas 

Response Count 

Head shakes with enough force 

to move both ears. 

Nurse Pause 

Gas 

Response Count 

Kid disengages and is not 

touching the bottle briefly (< 5s) 

before returning to bottle engage 

behavior (see above). 

Re-entry Normal Count 

Both ears break plane going 

from treatment to control box. 
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Table 3.3 Raw means ± SE for latency to enter treatment chamber (s), first bottle touch (s), and 

suckle (s) for all kids (n=12) by %CO2 concentration and test day. 

 10% 20% 

Day* Enter Bottle Suckle Enter Bottle Suckle 

B1 2.8 ± 0.3 2 ± 0.3 4.3 ± 0.4 2.6 ± 0.7 1.2 ± 0.2 3.8 ± 0.7 

G1 1.5 ± 0.3 1.5 ± 0.2 4 ± 1.2 3.8 ± 1.5 1.5 ± 0.2 4.5 ± 1.2 

W1 4.5 ± 2.1 1.3 ± 0.2 5.8 ± 2.5 4 ± 1.7 1.2 ± 0.2 3.7 ± 0.8 

B2 2 ± 0.4 1.3 ± 0.2 3.8 ± 0.9 2.5 ± 0.6 1.5 ± 0.2 3.3 ± 0.5 

G2 3.33 ± 0.2 1.3 ± 0.2 4.3 ± 0.5 1.5 ± 1.4 1.5 ± 0.2 3.3 ± 1.9 

W2 1.7 ± 0.5 1.7 ± 0.3 4.7 ± 1.3 1.6 ± 0.2 1.3 ± 0.2 3.3 ± 0.8 

30% 

B3 1.4 ± 0.3 1.4 ± 0.2 4.1 ± 0.2    

G3 1.6 ± 0.5 1.3 ± 0.2 4.5 ± 0.7    

W3 1.4 ± 0.2 1.9 ± 0.2 6.4 ± 1.9    

* B1-B3 indicate the day immediately prior to gas exposure (baseline); G1-G3 indicate gas 

exposure day; W1-W3 indicate the day immediately after gas exposure (washout). 

 

Table 3.4 Raw means ± SE for latency to ataxia (s), duration of ataxia (s), and latency to loss of 

posture (s) for all kids (n=12) by %CO2 concentration. 

Gas % Latency to Ataxia Duration to Ataxia Time to Loss of Posture 

10% 381 ± 139.2 8.4 ± 6.8 289* 

20% 105.6 ± 16.3 26.1 ± 4.9 191.4 ± 18.8 

30% 80.4 ± 11.3 13.8 ± 9.3 117 ± 10.2 

* only 1 kid lost posture during 10% CO2. 
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Table 3.5 Raw means ± SE for control chamber, transition period, and treatment chamber 

vocalizations for all kids (n=12) by %CO2 concentration and test day. 

 10% 20% 

Day* ControlA TransitionB TreatmentC Control Transition Treatment 

B1 105.7 ± 15.2 0.5 ± 0.5 0.8 ± 0.5 88.3 ± 22.7 0 ± 0 0 ± 0 

G1 103.2 ± 20.9 0 ± 0 5.5 ± 2.6 71.8 ± 22.6 0.3 ± 0.3 10 ± 3.5 

W1 89.5 ± 18 1 ± 0.5 0 ± 0 82.7 ± 21.2 0.3 ± 0.3 0 ± 0 

B2 75.7 ± 16.7 0.5 ± 0.5 0 ± 0 

114.8 ± 

20.2 0 ± 0 7.5 ± 7.5 

G2 71.7 ± 18.7 0.2 ± 0.2 0 ± 0 96 ± 26.4 0.2 ± 0.2 8.2 ± 3.3 

W2 76.5 ± 21.4 0 ± 0 0 ± 0 

119.7 ± 

22.4 0 ± 0 7.2 ± 7.2 

 30%    

B3 104.8 ± 23.9 0 ± 0 2.5 ± 2.5    

G3 99.4 ± 24 0 ± 0 5.9 ± 3.1    

W3 116.9 ± 21.2 0 ± 0 3.6 ± 3.6    

* B1-B3 indicate the day immediately prior to gas exposure (baseline); G1-G3 indicate gas 

exposure day; W1-W3 indicate the day immediately after gas exposure (washout). 
A Control vocalizations are vocalizations that occurred within the control chamber of the 

preference testing box 
B Transition vocalizations occurred after the sliding door was opened but before entry to the 

treatment chamber 
C Treatment vocalizations occurred after the kid had crossed through the doorway. 
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Table 3.6 Raw means ± SE for startles and rears occurring in the control chamber (CS and CR, 

respectively), and startles and rears occurring in the treatment chamber (TS and TR, 

respectively) for all kids (n=12) by %CO2 concentration and test day. 

 10% 20% 

Day* CS TS CR TR CS TS CR TR 

B1 

0.7 ± 

0.2 

0.2 ± 

0.2 2.5 ± 1.7 

0.3 ± 

0.3 

0.3 ± 

0.2 0.2 ± 0.2 5.7 ± 3.5 0 ± 0 

G1 

0.3 ± 

0.2 0 ± 0 8 ± 6.1 

0.3 ± 

0.2 

0.2 ± 

0.2 0.5 ± 0.5 4.8 ± 2.5 0 ± 0 

W1 

0.2 ± 

0.2 0 ± 0 8.2 ± 4.8 

0.2 ± 

0.2 1 ± 0.4 0.2 ± 0.2 4.7 ± 2.8 1 ± 0.5 

B2 

0.3 ± 

0.2 0 ± 0 5.5 ± 3.2 

1.7 ± 

1.1 

0.3 ± 

0.2 0.2 ± 0.2 7 ± 3.8 0 ± 0 

G2 

0.8 ± 

0.3 0 ± 0 4 ± 1.2 

0.5 ± 

0.5 

0.2 ± 

0.2 0 ± 0 6 ± 2.7 

0.2 ± 

0.2 

W2 

0.3 ± 

0.2 0 ± 0 5 ± 2 0 ± 0 

0.7 ± 

0.3 0.7 ± 0.5 

10.2 ± 

2.5 2 ± 1.8 

 30%     

B3 

0.5 ± 

0.3 0 ± 0 9.3 ± 2.7 

0.8 ± 

0.3     

G3 

0.5 ± 

0.2 0 ± 0 5.4 ± 1.8 0 ± 0     

W3 

0.6 ± 

0.3 0 ± 0 9 ± 2.7 

0.3 ± 

0.2     

* B1-B3 indicate the day immediately prior to gas exposure (baseline); G1-G3 indicate gas 

exposure day; W1-W3 indicate the day immediately after gas exposure (washout). 
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Figure 3.1 Blueprint demonstrating dual (control and treatment) chamber preference testing box 

used for conditioned place preference testing of kids (n=12). 
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Figure 3.2 Test room setup showing kid in preference testing box, observer to right of test box, 

exhaust system, camera position, lighting placement and black curtains used for obscuring the 

observer from kid’s view during preference testing of kids (n=12). 
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Figure 3.3 Average latency of kids (n=12) to enter (+ SE) treatment chamber for each %CO2 

concentration by startle score. Top row of X-axis defines %CO2 concentration, and bottom row 

of the X-axis represents the number of startles a kid displayed during testing.  

 

 

  

Figure 3.4 Average number of vocalizations (±SE) of kids (n=12) in the treatment chamber for 

each %CO2 concentration by startle score. Top row of X-axis defines %CO2 concentration, and 

bottom row of the X-axis represents the number of startles a kid displayed during testing. 
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Figure 3.5 Average time to loss of posture (±SE) of kids (n=12) for each %CO2 concentration 

by startle score. Top row of X-axis defines %CO2 concentration, and bottom row of the X-axis 

represents the number of startles a kid displayed during testing.  
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CHAPTER 4.  

 

GENERAL DISCUSSION 

4.1 Conclusions 

The domestication of animals accompanies a strong moral obligation to act in the best 

interest of the animal, sometimes ahead of even our own. The responsibility of upholding an 

animal’s welfare includes the burden of ending its suffering by euthanasia when necessary. By 

nature, death is free of neither fear nor pain. As such, it is imperative to continuously work 

toward the goal of providing the most peaceful death possible to the animals in our care. 

Additionally, it should be noted that many euthanasia methods pose risks to those who must 

administer them, making human safety just as pertinent in the quest for suitable methods. The 

food animal industry is in the unique position of needing a euthanasia method that is humane, 

safe for both the worker and the animal, reliable, and cost efficient. This is especially true for the 

dairy industry, where many unvalued male offspring are euthanized at birth in addition to normal 

operation losses. The current euthanasia methods that are approved by the AVMA for ruminants 

pose disadvantages such as cost, including upfront costs and costs associated with carcass 

disposal, and worker safety. Carbon dioxide is a euthanasia method that is currently used in both 

swine and poultry producers, and may offer benefits as an option for dairy operations. CO2 

provides a relatively fast-acting, hands off method that is safe and cost efficient when properly 

maintained equipment. This method could provide producers with the ability to euthanize more 

animals simultaneously, increase worker moral by using a hands-off method, and administer a 

consistent technique with little room for error. 
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One of the primary tools in determining the suitability of an inhalant euthanasia agent is 

the conditioned place preference and conditioned place aversion paradigms. These test models 

allow for a direct observation of an animal’s perception of a stimulus. Due to the lack of 

documentation concerning the learning ability of the neonatal goat, it was not clear whether kids 

were capable of developing a conditioned place preference or aversion. Subsequently, the first 

step in evaluating CO2 was to determine whether the kid was an appropriate model. The results 

from this study concluded that kids were able to be conditioned to cross through a doorway to 

gain access to a milk reward. Kids proved to be adept at solving a simple problem, and were able 

to travel through the test box with increasing rapidity with repeated exposure. Kids were also 

able to retain learned behaviors and did not show any decreased performance after a several day 

interlude. Furthermore, kids demonstrated the ability to learn and successfully complete the task 

despite the presence of a visual and tactile, or olfactory, obstacle. The success of all kids 

regarding these obstacles supported the theory that kids would be able to move through a plastic 

curtain, a necessary component for atmospheric separation, and would be willing to enter an 

environment with a novel odor present. The importance of fearfulness in the kid as also 

evaluated, and the findings suggest that more fearful kid do not have decreased performance 

compared to non-fearful kids. Ultimately, the results support the use of the kid as an animal 

model in further research, and a suitable model for the evaluation of the effects of CO2 in 

ruminants.  

The evaluation of CO2 as an acceptable euthanasia agent was based on unconditioned 

avoidance of the gas concentration on initial exposure, the extent of physiological gas-related 

responses, the presence of fear and pain behaviors exhibited during exposure and signs of 

conditioned place aversion on the day following exposure. The three concentrations used were 
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chosen based on literature concerning the reactions of other species to these concentrations, and 

on practical constraints associated with the preference testing equipment. The literature reported 

that 10% CO2 is generally considered non-aversive, 20% is aversive, and 30% has been 

described as painful (Makowska, et al. 2009, Niel & Weary 2007, Van den Hout & Griez 1984). 

As expected, kids did not show any avoidance behaviors during exposure to 10%, and the 

latency to enter the treatment chamber was very similar on the gas day compared to the baseline 

day. Surprisingly, kids did not show any avoidance behaviors during exposure to 20% or 30% 

concentrations. The latencies to enter, bottle touch, and suckle were similar across all test days, 

which suggests that none of these concentrations were potent enough to cause intense pain or 

fear reactions. Similarly, there were no consistent signs of conditioned place aversion on the 

washout days following gas testing. Although kids did not appear to recognize the CO2 as a 

potentially harmful stimulus, the increase in vocalizations during testing on gas days compared 

to baseline and washout days suggests that they did experience distress associated with fear, pain 

or both during exposure. Vocalizations observed during 20% and 30% treatments were similar 

across kids. Signs of CNS depression occurred more quickly, and the time to loss of 

consciousness was numerically reduced during 30% compared to 20%. Furthermore, 

vocalizations did not increase compared to 20% and there were no increases in avoidance 

behavior or conditioned aversion exhibited by any kids during 30% exposure. Thus, 30% CO2 

may be the most humane and effective concentration for use in kids. 

4.2 Future Research 

Although the results of this study are promising, it also leaves several questions to be 

investigated further. During the assessment of kids’ learning ability, it was not determined if they 

were able to develop conditioned place aversion. Young rodents have a heightened response to 
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fear conditioning compared to mature rodents; a trait that may also be present in kids of the age 

group (<4 weeks) in this study (Hefner & Holmes 2007). While it is reasonable to assume that if 

a kid can form a conditioned place preference, it can also form an aversion, there is no current 

literature supporting the latter. Evidence of the ability for kids to avoid a known danger would 

further support the concept that 30% CO2 is not highly aversive. Similarly, it must be 

investigated at what concentration of CO2 kids are willing to forgo a milk reward. An alternative 

approach would be to investigate whether kids would hesitate to enter an environment of 30% 

CO2 to access a less valuable reward than the milk bottle. This could be accomplished by 

offering reinstatement with conspecifics instead of a bottle to mitigate the drive to suckle, or the 

milk could be made less valuable by sating kids prior to testing. The answers to these questions 

are imperative to advancing the use of CO2 as a euthanasia agent in ruminants. The results from 

the current study merit continuing the investigation in to the use of CO2 as a euthanasia agent for 

ruminants. Through future studies and development of the concept, more knowledge will be 

available to producers, researchers, and veterinarians, the positive impact of which would affect 

ruminant welfare worldwide. 
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